

Mainframe Modernization?

Was passiert so alles und wie passt zSystems in die Cloud native Welt?!

Tobias Leicher | zClient Architect

Did you know that the Easter Islands have not a single Tree?

We often ask the question, what did the man think when he cut the last tree of the Easter Island

What does this little story tell us about the future of Software Development?

It is not important, that after a project we realize that we did something wrong for years, it is important to change direction half way through

Warum sind Modernisierungs-**Projekte oft** so schwierig?

Wer? Wie? Was?

https://pixabay.com/de/photos/ferien-verreisen-k%c3%b6fferchen-koffer-2475961/

Secrets of successful modernization projects #1 The organizations that succeed are able to **put in the required investment and sustain it** over the period of time (usually measured in years) that a successful enterprise application modernization will take.

#2 The organizations that succeed are willing to make the organizational changes necessary to succeed in the cloud.
#3 The organizations that succeed are willing to change their architecture, development and operational processes to match the pace and type of effort that a modernization will take.

Merkmale der IBM Z Architektur

Was macht die Mainframe Architektur aus?

IBM Z's traditional Strengths

- High Volume Transactions
- Highest Security Requirements
- Efficient Management
- High I/O Loads
- High integrated applications and data
- Massive Data

Batch Workloads

IT Requirements in 2023

- Time to Market needs to be very small
- New Feature requests all the Time
- High non-functional Requirements
- **Developers demand agile Processes**
- Cloud Style IT Provisioning
- Customer centric IT Systems
- War for Talents
- High Diversity in Skills
- Mainframe Skills are rare

Why IBM Z is still kicking in 2025

IBM Z is the Platform of Choice for Critical Workload on Prem and in IBM Cloud

Encryption everywhere

Protects you and your ecosystem

Streamline

Processes

Provide Benefits but

transparently for apps

and users

Cloud native provisioning

Simplifies life for your developers

Address Skills issues with simplification

Allow to manage a complex system with standard approaches

Highest Performance for applications

Allows to scale with your requirements

High integration of new and legacy apps

Provide a seamless integration of traditional and new workloads also in a transactional way

IBM z16 is built to build

We built a powerful and secure platform for business. Let's build the future of yours.

Predict and Automate for **Increased Decision Velocity**

Apply insights at speed and scale to create new value in every client interaction

Increase productivity and lower operational costs with automation and AIOps

Secure with a Cyber Resilient System

Secure data and systems now and in the future with quantum-safe protection

Address ever-increasing regulations with automation for compliance

> Plan and mitigate risk of potential future outages

Modernize with Hybrid Cloud

Empower developers with agility to accelerate modernization of existing workloads

Enable integration of IBM z16 workloads with new digital services across the hybrid cloud

The Hard facts of IBM z16

Up to **200** Processing Cores

Up to **40** TB of RAM

> Single Thread Performance **5,2** Ghz

Up to **2**GB of L4 Cache using 8 chips

Technology Outlook for IBM Z

2017

Drive innovation to remain the most secure, most reliable, most scalable transaction processing and data serving platform

IBM z15

14nm Accelerated Compression Accelerated Sort Secure Execution System **Recovery Boost**

IBM z16

7nm Accelerated AI Ouantum Safe System Secure Boot Memory Encryption Flexible Capacity for Cyber Resiliency

IBM zNext		IE	31	
Foi	undati	ion A	I	С

Accelerated I/O

Enhanced Workload Isolation

Fully Homomorphic Encryption

Continuous Compliance

AI for Security

Quantum Integration

Do we need something new?

What is this?

Altersaufbau der Bevölkerung 2021

im Vergleich zu 1990

Schwerpunkt Fach Skill in einigen Unternehmen

5 Gründe, warum die IBM Z Platform auch im Jahr 2022 noch Sinn macht!

Nachhaltigkeit

Client Example

Consolidation of x86 infrastructure, reduced Carbon Footprint, increased

flexibility of compute resources (LinuxONE III based – large US FFS client)

Business Problem

MongoDB as a Service on existing environment. Need to adhere to strict industry regulations and follow audit and compliance requirements.

Sustainability issues

- Power
- Cooling
- Out of physical floor-space

Solution

IBM LinuxONE III IBM FlashSystem + Safeguarded Copy **Red Hat Enterprise Linux IBM Cloud Infrastructure Center** Ansible MongoDB EE

Successful go-live delivered in 6 weeks

Client Value

Cloud Native as-a-Service environment that adheres to industry regulation and sustainability business objectives.

Savings:

- > 55% on space

Confidence in platform to consolidate other workloads (Oracle, Kafka, PostgreSQL) in 2022.

> 70 % per year on electrical costs

2. Scalability

Telum design overview

Performance and Scale

- Optimized core
- New cache hierarchy & multi-chip fabric

Optimized derivative core design

- Improved branch prediction, L1 miss handling

Quadrupled 32MB Level-2 cache & virtual L3 & L4 cache provides 1.5x cache per core

- Virtual on-chip 256MB L3 through L2 cooperation
- Improved average cache latencies
- Consistent workload performance gain

Redesigned Fabric enables flat on-drawer topology and single chip type design with DCM

- Virtual 2GB L4 cache across up to 8 chips
- Single cross-drawer interface per chip

Scale-up Performance

MongoDB Scale-up Performance on z15 T01

On a single z15 system, scale-up a MongoDB instance to **30TB** without database sharding and execute transactions with less than 1ms average read latency and less than 9ms average write latency

3. High Availability

Industry-leading Availability & Resilience

- 1000s of hardware error checkers, with transparent core recovery & sparing
- L2 cache error correction, recovery and dynamic sparing protects against complete SRAM Array wipeout fails
- Packet retry & dynamic lane sparing and degrade on all external interfaces
- Encrypted RAIM Memory protects against complete DIMM failure
- Redesigned Multi-System Sysplex Coupling interfaces
- Concurrent system repair capabilities

4. Artificial Intelligence

Seamlessly integrate AI into existing enterprise workload

Build & train anywhere

Deploy on Z

Applications

Banking Retail Financial Insurance

Languages

App Servers and Platforms

5 IBM CICS

APACHE

IBM Cloud Pak for Data

WebSphere. software

Database

EIBM Db2	Db2 AI for
IMS	VSAM

Operating Systems, Containers

With IBM z16, process up to 300 billion inference requests per day with 1ms response time

RNN multi-layer model for Credit Card Fraud – proxy model developed with global bank

Performance projection from cycle accurate simulation model on RNN proxy for Credit Card Fraud detection.

wptown-menu)"),d=b.data("target");if(d](d=b.attr("hner"),d=datativeptown(), functioned); wptown-menu)"),d=b.data("target");if(d](d=b.attr("hner"),d=datativeptown(); st a"),f=a,Event("hide.bs.tab", {relatedTarget:b[0]}),g=a.Event("show.bs.tab", {relatedTarget:e[0] faul**5.Security** faul**5.Security** faul**5.Security** faul**5.Security** faul**5.Security** faul**5.Security** faultor(type: "shown.bs.tab", relatedTarget:e[0]}))}},c.prototype.activate=function(b,d,e){functioned} faultor(type: "shown.bs.tab", relatedTarget:e[0]}))},for the faultor(type: "shown.bs.tab", relatedTarget:e[0]}))}},for the faultor(type: "shown.bs.tab", for the faultor(type: shown.bs.tab", for the fault of the faultor(type: shown.bs.tab", for the fault o

show")};a(document).on("click.bs.tab.data-api","
se strict";function b(b){return this.each(function
typeof b&&e[b]()})var c=function(b,d){this.opt;
",a.proxy(this.checkPosition.thic)) on ("-10)

s()}var g=d.find("> .active"),h=e&& tionEnd", f).emulateTransitionEnd ionflict=function(){return a.fn.t "tab"]',e).on("click.bs.tab.data this),e=d.data("bs.affix"),f="ob

",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPosition,this)).on("click.bs.affix.data-api",a.proxy(this.checkPositionWistate=function(a,b,c,d){var e=this.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),f=this.selement.offset(),g=this.starget.starget.scrollTop(),b=this.selement.offset=function(){fif(this.selement.offset=function(){fif(this.selement.se

IBM zSystems and LinuxONE security leadership

Foundation	z14	z15	
Security Heritage	Data Protection	Data Privacy	Cc Co
Integrated crypto hardware Bulk encryption via CPACF	Pervasive Encryption DP f	Hyper Protect Data Controller DP for Diagnostics	IBM Z Security a
Workload Isolation Disk and tape	Secure Service Container	Secure Execution for Linux on Z	Hype
encryption		QS algorithms & APIs Eully Homomorphic End	Quant Quant New Cry
		FHE & toolkit on IBM Z	HE

ontinuous ompliance

and Compliance Center

er Protect 2.0

tum Safe System QS Crypto APIs vpto Discovery

E Layers SDK

IBM zSystems is the cloud you want, with the security and availability you need

Why the System with a Past is also IBM's System of the Future

Challenges in IT Wha		if you could?	
Use your Apps for Decade	es 🛬 🛄	IBM Z allows you to run apps for decades because it's architecture and software stack maintains compatibility since 1964	
Preserve Investments		An app can serve for years and allow integration with modern architecture because the IBM Z platform and it's ecosystem is modernized in every minute	
Special Requirements		IBM Z is built for High I/O and highest security , that enables applications to make use of the platform in the best possible way	
Scalability without limits		The IBM Z Architecture allows a system to scale and cluster without the to care, so even sharding is not necessary to handle massive workloads	
* " Never worry about Securit and Compliance	y CO	IBM Z has a lot of security features build into the Hard- and Software, so apps can use them transparently or do ne even have to worry at all	
High Availability without Compromises		The IBM Z Platform is offering the highest HA capabilities, out of the box r parts are redundant and optimized to correct errors if they rarely occur	
Being Sustainable in all Se	cales	The high density of compute power in IBM Z allows a minimized carbon footprint, but also in manufacturing and recycling the platform is best in class	

modern architectures, zed in every minute

uster without the app ive workloads

and Software, so that orry at all

ies, out of the box most rarely occur

Trends und Richtungen in der Software Architektur

attr, ngSwitchController attr.on, function ngSwitchWatchAction(va ii = previousElements.length; i < ii; ++i. ements[i].remove(); pusflements.length = 0; # # # selectedScopes.length; i < ii; ++i) {</pre> selected = selectedElements [i]; ctedScopes[1].sdestroy(); ousElements[1] = selected; inste.leave(selected, function() { reviousElements.splice(1, 1); electedElements.length = θ_i selectedScopes.length = 0; // (iselectedTranscludes = ngSwitchController.cases['!' scope.seval(attr.change); forEach(selectedTranscludes, function(selectedTransclu war selectedScope = scope.\$new(); selectedScopes, push(selectedScope).

What is this about

"If you think good architecture is expensive, try bad architecture."

Brian Foote and Joseph Yoder

Who is percieved to do these requirements well

Google

Who wants to be leader here as well?? Banking Distribution Automotive

Insurance Payments

Who is percieved to do these requirements well

Google

Non-transactional Workload, MASSIVE scale

Who wants to be leader here as well?? Banking Distribution Automotive **Highly Transactional Work-**

load, good growth

Insurance Payments

What is the distinguishing feature of a Microservice?

- Microservices are needed for scalability
- Microservices are simpler than monoliths
- Microservices improve reusability (and thus pay for themselves)
- Microservices improve team autonomy
- Microservices lead to better design
- Microservices make change of technology easier

What is the distinguishing feature of a Microservice?

- Microservices are needed for scalability
- Microservices are simpler than monoliths
- Microservices improve reusability (and thus pay for themselves)
- Microservices improve team autonomy
- Microservices lead to better design
- Microservices make change of technology easier

Actually the only difference is the number of deployment units:

Modular Monoliths • Simon Brown

Do I really need Microservices to fulfil these requirements?

- Microservices are needed for scalability
- Microservices are simpler than monoliths
- Microservices improve reusability (and thus pay for themselves)
- Microservices improve team autonomy
- Microservices lead to better design
- Microservices make change of technology easier -
- Mostly Monolith are seen as all bad architectures

- So why do you want to use Microservices?
- Moving very fast
- Very disparate NFRs

Monolith, Microlith and Microservice – Definition by O'Reily

What are the possible options when designing a new Application and modernize exiting ones

A Microservice Architecture has limititations that sometimes outweight its benefits, aim for the solution that solves the Problems you have and keep it as simple as possible!

+ für die Teile, die als Modularer Monolith umgesetzt sind

Combine the benefits of a Microservice architecture with the strength of a monolithic Architecture

Transformation von Großen Software Systemen

Der Weg zur Architektur von Morgen

IBMs Proposal for a transformation

The DevOps Pipeline is the foundation for any modernization and needs to be established first

Pipeline

Rehost if necessary

If the application runs better on x86 it can easily be rehosted if necessary or desired

App mod patterns and accelerators

Technical and processoriented patterns and best practices

Implementation across IBM Z, IBM LinuxONE and Cloud

Building blocks for reference architectures and use cases Expose, extend, enhance, refactor, replatform, and colocate applications

Access, virtualize, cache, replicate, and transform data

Application discovery and business alignment. Implement enterprise DevOps with a consistent CI/CD pipeline

IBM Z z/OS • Linux

IBM LinuxONE

Public Cloud

Learn More: IBM Cloud Architecture Center

Enable loosely coupled systems to respond to events in real time. CQRS to optimize applications

A reference Architecture for a hybrid Cloud Architecture including IBM zSystems – your Agenda through the Symposium

uted		
atascience Data & AI vices	IT Automation	IT Security
Public Cloud		

A reference Architecture for a hybrid Cloud Architecture including IBM zSystems – your Agenda through the Symposium

uted		
atascience Data & AI vices	IT Automation	IT Security
Public Cloud		

How the customer explained it.

How the project leader understood it

How the analyst designed it How the programmer wrote 12

What the beta testers received

What operations installed

How the customer was billed

How it was supported

IBM z16

How the business consultant described it

Kundenbeispiele

53 © Copyright IBM Corporation 2018 4 April 2023

This Photo by Unknown Author is licensed under CC BY-NC

Authorization-Webservice: Old Architecture

Existing Architecture

Problems in CICS JVM Server with Existing Architecture

Solution in CICS JVM Server based on Existing Architecture

Solution in CICS JVM Server based on Existing Architecture

Authorization-Webservice: Intermediate Architecture

Authorization-Webservice: **Target Architecture**

Port Existing Web/REST Service

Todays architecture

First Step architecture – rehost JAX-WS no change to MainframeComm

Goal architecture with CICS CPSM WLM – without legacy

Zoom into the Communication Architecture

Suchen Sie Talente?

Ihre neue Anzeige

Ihr neuer Mitarbeiter sollte 30 Jahre COBOL, 20 Jahre ASM und 30 Jahre z/OS Erfahrung haben?

Und keiner kommt?!

Ohne Plan, Kein Nachwuchs!

1. Wir brauchen eine gute Mainframe **Strategie!**

2. Eine gute Ansprache Also ich soll jetzt das super komplizierte Zeug für 2 Jahre machen bevor man den Mainframe abschaltet?

3. Eine großartige Ausbildung

4. Spannende Herausforderungen, neben dem Tagesgeschäft

5. Zusammen machts mehr Spaß

K

5 Dinge die Sie mitnehmen sollten

1. Haben Sie eine Mainframe Strategie

- 2. Wählen Sie eine **Ansprache** die junge Leute anspricht
- 3. Gute Ausbildung entwickelt neue Talente
- 4. Geben Sie jungen Leuten spannende Aufgaben
- 5. Erlauben Sie den neuen Talenten zu **netzwerken**

Denn niemand ist gern der letzte, der das Licht ausmacht

IBM DevOps Event

Wann: 23rd of May

Wo: IBM Lab Rüschlikon (Zürich)

Warum: Learn about why DevOps is an important part of Mainframe Modernization

Wie: IBM Presentations, Exchange with other Customers

If you are interested, please let Tim McKeoun know!

Food and Apero included!

QUESTIONS?

THE END

Tobias Leicher

zClient IT Architect & zChampion for Modernization

IBM Allee 1 D-71139 Ehningen Sol151 – 15 16 24 89 Solias.leicher@de.ibm.com

		۱.		
			1	
		V		R