99. GSE zExpertenForum der z/0S
Arbeitsgruppe

Vitznau, 23.10.2024

z/OS Container Platform

Redelf Janfsen

IBM Z Brand Te cialist

Statement of direction

On June 23, 2020, IBM announced in

https://www.ibm.com/common/ssi/cgi-
bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letter
num=ENUS220-033

the following Statement of Direction:

—IBMintends to deliver a container runtime for IBM z/0S® in support of Open
Containers Initiative compliant images comprising z/OS software.

—IBM intends to deliver Kubernetes orchestration for containers on z/OS.

—Website: https://www.ibm.com/products/zos-container-platform
—Product ID: 5655-MC3 (5655-MC4 S&S)

/' z/0S Container Platform,
GA March ‘24

/' z/0S Container Platform,
CD1 July 24

https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/products/zos-container-platform

What is this presentation NOT about?

This presentation is about zCX (z/OS Container Extensions).

Recall zCXiis:
—Linux running in a z/OS address space
—Providing either Docker or OpenShift as the container runtime

—Allowing you to deploy Linux on IBM Z containers in that address space

z/OS Containers is about:
—Providing a container runtime (OCI-compliant) that runs natively on z/OS
—Allowing you to build and deploy native z/OS applications as containers

—Subsequently, orchestrate those containers with a Kubernetes orchestration engine.

Comparing containers and virtual machines

VMs are complete virtualized stacks, each running
their own OS, middleware and applications. Their size
is typically measured by the gigabyte.

Containers merely package the app and all the files
necessary to run; they share a single instance of an
operating system (OS). Container images are
measured by the megabyte.

Virtual Machines

R
-
-
-
-
-
-
-
e
2

App App App
Libs Libs Libs
Guest Guest Guest
0S 0S 0S
Hypervisor

[---]
[---]

Containers

App App App

Libs Libs Libs

Container Engine

Host Operating System

il N

What are containers

—Containers are a packaging mechanism including all
application code and required dependencies

—Containers utilize operating system facilities to run
applications in isolated environments

—While containers enable decoupling of applications
from the environment in which they run, they are
operating system and hardware specific

—Easy and consistent deployment on different targets

App

Libs

Dev

Prod

N/

Public Cloud

Container “Genealogy”

Operating System HW-Architecture Deployment Option

—- x86 Linux Server

Today’s topic - [

. e - |

Key benefits of containers
— skills & consistency

Standardization

Common model for packaging
and deployment of applications
across the IT landscape

Portability

Consistency for movement
across z/OS Dev / Test / Prod

Improved quality

Containers are fully contained
including application,
middleware, and all dependent
configuration information

Agility

Deploy application and
provision facilities to support
agile development and meet
developers’ expectations

Isolation / Security

Isolate applications’ execution
environments from each other,
thereby increasing security and
integrity

Orchestration

Use industry standard means
of deployment and
management (ala Kubernetes)
across a broad landscape of
container-supporting platforms

Containers are based on
Images

Definition

podman run mywebapp $

An is a lightweight, standalone, 7

executable package of software that . . .

, . : Containerfile / Dockerfile
includes everything needed to run an Layer 4 (r/w) e (reversed orden)

application: code, runtime, system tools, mywebapp f \
system libraries and settings ENTRYPOINT java -jar

Layer 3 (r/0) Execution mywebapp-0.0.2. jar
Images can only be created or read, but not o _
>~) Layer 2 (/o) Application COPY mywebapp-0.0.2.jar /
modified - they are immmutable
Layer 1 (r/0) Base FROM ibmjava:8

To modify an image, a new image need to be
built on top of an existing image

. . odman build . -t myweba
Images become containers at runtime P Y PP

What are z/OS containers?

z/OS containers run on z/OS isolated from each other through z/OS facilities

z/OS containers provide portability and consistency across z/OS LPARS and environments

Examples

—Anewly developed Java / WAS (Liberty) application; will be built and deployed as a container from
inception since the application developers come from a distributed background

—Aspirational: A 20-year-old mission critical COBOL application running in CICS® or IMS™ ; it can be
containerized so that it can be orchestrated (via Kubernetes) with other cloud native container
applications that run on non-z/0OS platforms

Enables system programmers to create templates for consumption by developers in a regulated
manner

Allows developers to consume defined resources in a self-service model in anisolated, approved
environment

How scalable is this?

Start small with a few containers — “ok”

Growing the size — “hmm”

Adding even more — “how do I manage this?”

A solution is needed:

10

Container orchestration with
Kubernetes

Kubernetes is the de factor standard container
orchestration platform to manages the life cycle of
containers

—Provisioning and deployment

— Availability

—Scalability

—Scheduling on infrastructure
—Health checks

Facilitates declarative management

Widely available open-source component with a large
and rapid growing ecosystem

Application containers

Lol

API Kubernetes Control Plane
Worker Worker
Node Node

11

Kubernetes objects

A Pod is the smallest deployable unit of computing
that can be created and managed in Kubernetes

It represents a single instance of an application
Typically, it consists of a single container

Sometimes it groups multiple, tightly coupled
containers that share the same network and storage
resources

-

kubectl CLI

v

Kubernetes

Pods
A
> >]
v | ¥ ¥
N
kubelet kubelet kubelet
z/0S z/0S z/0S

Control plane

12

Kubernetes objects

Kubernetes runs your workload by placing containers
into Pods to run on worker machines, so called

A node may be a virtual or physical machine,
depending on the cluster

Forz/0OS, a node isan LPAR or guest VM running z/OS

A is the control plane with its components
(API-server, scheduler and more) plus a collection of
worker nodes

For HA-reasons, the cluster components typically run
on 3 control plane nodes

-

kubectl CLI

Kubernetes

<«
-«

Kubernetes i
Control plane z/0S z/0S

S~o
~
~
~~.
~~
~
~.
~<
~
~.

1
N

Control p[ane Worker

-
e

13

Kubernetes objects

A Deployment manages multiple instances of an

S Deployment mywebsryv, replicas=2
application, i.e., pods @.

The deployment declares how many replicas of an

application should exist l
You can scale the number of replicas up or down, on <
demand or even automatically l——» “— l l
A deployment supports rolling updates while
maintaining the availability of the application kubectl CLI > S -~
W S
Kubernetes manages replicas towards their desired
status
Kubernetes kubelet kubelet kubelet

Control plane z/0S z/0S z/0S

14

z/OS approach in using
open-source technologies

[Ei] opEN s

OCI specifies two specifications:

Formed under the Linux Foundation

—Image Specification — how to build an image
—Container Runtime — how to run an image in a container

kubernetes

Kubemetes is an open-
source system for
automating deployment,
scaling, and management
of containerized
applications

Cri-o

CRI-O is an open source,
community-driven
container engine and is a
lightweight alternative to
using Docker as the
runtime for Kubernetes

RUNC

runC is a universal
container runtime and a
CLI for spawning and
running containers
according to the Open
Container Initiative (OCI)
specification

Podman (POD manager)
Isan open source CLI
designed to make it easy to
find, run, build, share and
deploy applications using
OCI-compliant containers
and container images

15

z/OS Containers Architecture

z/OS Container Platform (zOSCP)

r-—-r——~>"=—=—=—=—-=—=7"=7"=7"=7"¥7"=7¥7”"¥=7¥”"¥=7¥="¥"=-"=-"=-"=”""="=-"="-"=-""="-"=== I
I Utility CLT’s Miscellaneous Utilities I
T q . |
’ (skopeo & umoci) :
I I
| Podman CLI { podman } :
| |
: REST CRI Fork/ | Fork/
I APIs gRPC Exec 1 Clone
s RN RN RN

. Kubirpnletes : Kubernetes Kubernetes h :

Control Plane Worker runc !

' | Appliance | \. _(k_u tielet_) ________________)|
i ')

u

> I Linux on z/0S : : z/OS UNIX | | g—

1\ addressspace /| z/OS container host Kernel
|

16

z/OS Containers Architecture

z/OS Container Platform . : .
ZOSCP) F———————————————— - The kubelet is responsible for \ —

managing the deployment of
g pods to Kubernetes nodes

* It receives commands from
the API server and instructs
the container runtime to start

* One perz/OS LPAR

e Will run as a started task
/ ¢ \ 1 l_ (daemon) on z/0OS

|
1
|
|
1
: or stop containers as needed
|
|
|
|
|
|

‘ Kubernetes)
Worker
- I (kubelet))
_______________________ 1
| | S
= - e
T\ / |

z/OS Containers Architecture
* CRI-O stands for Container

2/0S Container Platform Runtime Interface (CRI) for
(zOSCP) Fm——————mm mm e —— = === OCI-compatible runtimes

> * CRI-Ois an implementation
of the Kubernetes Container

|

1

: Runtime Interface (CRI) that
: ,[will allow Kubernetes to

I directly launch and manage
| OCI-compliant containers
|

|

|

|

|

|

* One perz/0OS LPAR

‘ﬁ ﬁ e Will run as a started task
/ ¢ \ (daemon) on z/0S

\v

18

z/OS Containers Architecture

z/OS Container Platform
(20SCP) F--- T Ty . runcisaClItoolfor (== =====-= I

spawning and running
containers according to

|

1

: the OCI specification
1

|

| containers, interacting
|

|

|

|

|

|

|

|

|

|

* Provides all the low- I
level functionality for 1
|

with low-level operating :
|

|

|

|

|

|

system features to
e v 1 create and run _l il

containers as z/0OS ™~
address spaces

19

z/OS Containers Architecture

z/OS Container Platform
(zOSCP) * Podman is the main CLI tool

used to manage the entire
lifecycle of a container

» Application Developers will
use this to build images and
deploy them as containers

» System Admins will use this
to manage containers and
view their status

e Over 80+ subcommands

—PL Podman 1

20

z/OS Containers Architecture

z/OS Container Platform

(zOSCP) r—-——=-=-=-7

e

—
=

‘ Kubernetes
- Control Plan

Appliance

Linux on z/OS
K address space

» The Kubernetes control plane

orchestrates containers across
a cluster of worker nodes

In our case, the Kubernetes
control plane does not natively
run “on” z/OS, but rather “on”
Linux in a zCX-like address
space

Since this is shipped as an
appliance, we refer to it as a
Control Plane Appliance or
zCPA, for short

A Kubernetes cluster needs to
be made up of an odd number
(three or five) of control plane
nodes. Three is enough for
most use cases; five will give
you better availability

Hence you could have one or
more running in a z/OS LPAR

21

z/OS Container Platform today

July ‘24

z/0S 2.5and z/0S 3.1
provide among others

—New UNIX System
Services syscalls (75)

—\Various enhancements
to existing syscalls and
C-header files

—Linux concepts of
namespaces for
isolation

—Kubernetesv1.29

z/OS Container Platform (zOSCP)

-~~~ " T m - mm—mm e m e mm—mm— == === I
I Miscellaneous Utilities I
: (skopeo & umoci) :
I I
I [Podman } I
I I
: REST CRI Fork/ | Fork/
I APIs gRPC Exec 1 Clone
s RN RN RN
B\
|| Kubernetes Kubernetes :
1| Control Plane Worker runc !
' | Appliance |\ _(k_u tieiet_) ________________)|
i :)
| Linux on z/0S . z/OS UNIX | | g—
1\ addressspace : z/OS container host [Kernel }
I

22

zOSCP CD1 Support

» Available with PTFs for the following 12 APARS:

OA66262
OA66266
OA66267
OA66268
OA66269
OA66270

* Available since June 28, 2024

OA66361
OA66362
OA66363
OA66364
OA66365
OA66366

23

z/OS Container Dependencies provided in z/OS

New Syscalls (75)

openat() fgetxattr()
openat2() flistxattr()
syncfs() + fremovexattr()
getrandom() -+ fsetxattr()
getentropy() * epoll_create()

listxattr() + epoll_createl()
Ilistxattr() * epoll_ctl()
Iremovexattr() * €poll_pwait()
Isetxattr() * epoll_wait()
removexattr() °* eventfd()
setxattr() + fstatfs()
lgetxattr() + statfs()
getxattr() * dirfd()
flock() + wait4()
prlimit() + futimesat()
umount2() * utimensat()
nanosleep()

Linux variant of mount()
Linux variant of umount()
pthread_condattr_setclock()
Linux variant of localtime_r()

clock _gettime()
futimes()
lutimes()
strchrnul()

fdatasync()
inet_aton()
pivot_root()
accept4()
getline()
sethostname()
clone()
unshare()
setns()

prctl()
pipe2()
dup3()
inotify_init()
inotify_init1()

inotify _add_watch()
inotify_rm_watch()
memfd_create()

Enhancements to existing syscalls & headers

faccessat()
fchmodat()
fchownat()
fstatat()
linkat() *
mkdirat()
mkfifoat ()
mknodat()
readlinkat()
renameat()
renameat2()
symlinkat()
unlinkat()
__fchattrat()
dprintf()
asprintf()
vasprintf()

Implement BPXK_AUTOCVT for AF_LOCAL sockets
IP_TTL flag for setsockopt() & getsockopt()
New flags for open()

@0

Support “e” flag on fopen() Linux Concepts
New flags for socket() & socketpair() « IPC namespace
NAME_MAX n limit.h PID namespace
PATH_MAX in limit.h UTS namespace

NI_MAXHOST in netdb.h « Mount namespace
NSIG in signal.h « Union file system
tm_gmtoff in time.h « /proc file system
new flags on mount() « Namespace utilities
Remount on TFS e nsenter

new flags on umount() « unshare

Update to gethostname() . Isns

New flags in mmap()
PROC_SUPER_MAGIC in sys/statfs.h

z/OS Unigue Technoloqgy for Containers

* WLM support for new Service Class

Hybrid networking support
Update to netstat utility

Possible IBM zOSCP Configurations 1 of 2 (including Variations thereof)

Kubelet Worker
Node

z/OS LPAR - SY1

Single Instance Configuration

Kubelet Worker Kubelet Worker
Node 1 Node 2

z/OS LPAR - SY1

Zz/OS LPAR - SY2

Unbalanced Configuration

Kubelet Worker
Node

z/0S LPAR - SY1 z/OS LPAR - SY3

Single Instance Configuration+

Kubelet Worker Kubelet Worker
Node 1 Node 2

z/OS LPAR - SY1

Kubelet Worker
Node 3

Zz/OS LPAR - SY3

z/OS LPAR - SY2

Unbalanced Configuration+

Possible IBM zOSCP Configurations 2 of 2 (including Variations thereof)

Kubelet Worker Kubelet Worker Kubelet Worker Kubelet Worker Kubelet Worker Kubelet Worker Kubelet Worker
Node 1 Node 2 Node 3 Node 1 Node 2 Node 3 Node 4

Z/OS LPAR - SY1 z/OS LPAR - SY2 z/OS LPAR - SY3 Z/OS LPAR - SY1 Z/OS LPAR - SY2 z/OS LPAR - SY3

z/OS LPAR - SY4

Balanced Configuration Balanced Configuration+

Implementation

Application running in containers will be address spaces on z/0S.

z/0OS has implemented the Linux concept of namespaces for isolation and virtualization. This is above and
beyond the isolation already available on z/OS for address spaces.

- allows a process running inside a PID namespace to seem as if it is the only process
running in that space and therefore would have a PID=1. Of course, from the outside (of the PID
namespace) it will have a real PID number, but on the inside, it will have a PID of 1.

- will allow Inter-Process Communication (IPC) to only happen between the processes
running within that IPC namespace. The types of communication we are talking about are the POSIX
IPC communication schemes: semaphores, shared memory and message queues. Cross-memory and
common storage are not affected.

Implementation (cont.)

- UNIX Time Sharing namespace allows a process to set the hostname of that
environment. Thisis needed because the container runtime will assign a random ID to this but can be
over-ridden in the future.

- Essentially allows for a scoping of the file system that the processes within that
mount namespace will be able to see. To establish a mount namespace, you also need to have
pivot_root() capability (essentially another flavor of chroot()) whereby you are changing the root directory
to a sub-portion of the file system hierarchy that has just been established. That will be file system view
the process(es) will have. The other new capability that is needed for mount namespaces is bind mounts,
whereby you mount things that are outside of the mount namespace file system to inside of the
namespace.

Implementation (cont.)

SO/z uo
paluswaldwi 10N

- We don't have cgroups on z/OS and so having a cgroup namespace on z/0S
doesn't make sense. However, we have integrated with WLM, whereby one could specify a specific
service they want the process (address space of a container) to run under, or if set up, we would run
it in a specific WLM service class created just for containers. If nothingis set up, then we will take the

lowest service class (batch).

- There is no network namespace support on z/OS. However, upon creation of a
container or a pod, a dynamic VIPA is assigned to that new instance and that gives the appearance of
network isolation which is very similar to what network namespaces provide on Linux.

- We chose not to implement a user namespace, because we didn’t want to erode

the concept of “centralized security” on z/OS. We want applications running in containers to be
governed by the same security database, as when applications would be running outside containers.

—We may need to invent new z/0S-specific namespaces in the future.

How to get started?

Development & Test

—Leverage an isolated self-service environment
for development and test

—Employ enterprise-wide tool and process
standardization enabling parallel development
and continuous integration

—Spin up/down containers to introduce new
features and facilitate changes

Access current base images (z/0OS, Java, Golang,
z/OS Connect)* from IBM Container Registry (ICR)

Create your own application image on top of a
base image using podman or umoci

Use skopeo to maintain your own image registry

Containers can be started and stopped using
podman from the UNIX System Services
command line

*More images will be added over time

30

Installation and Configuration

Overview

» Workflow is provided to perform configuration of zOSCP:
 /usr/lpp/IBM/zoscp/workflows/zoscp_general.xml

* Documentation references workflow — it is expected that the end user
go through the workflow for configuration.

* Workflow is scoped at a system level and should be performed on
each system where zOSCP is to be configured.

* Some steps are manual and require updates to be made to parmlib or
submit a security sample job.

* Expectation is the workflow is run by a uid=0 user or one that has
access to BPX.SUPERUSER.

Z/O S I\/I F W : r kfl : W Worlkflows » Performs the base setup for running zOSCP - Workflow_0

Performs the base setup for running zOSCP - Workflow_0

» Worldlow Details

* Steps are expected to be completed in .
order, with some steps disabled until prior s -
steps are completed. 5

M State
—| Filter

* Some steps use inline JCL, while others call - ...
a shell script with BPXBATCH O e

|| = Ready
| = Ready
|| = Ready

|| %Mot Ready

|| = Ready
|| = Ready

| = Ready

[] = Ready

| o Ready

|| e8> Mot Ready

No.
Filier

1

Title
Filier

Validate your BPXPRMxx parmlib iz setup
for zOSCP

Setup SMFLIM:x for zZOSCP

Add the z0SCP product directory to
FATH= environment variable in
fefciprofile

Perform podman security sefup

Setup permanent filesystem used by
podman

Setup sharing of Podman Filesystem

Setup temporary filesystems used by
containers

Copy default configuration files provided
for containers

Establish affinity to a TCPAP stack for
Z/0S UNIX Common INET (CIMET)
environments

Perform appropriate sefup for container
netwarking

Setup the WLM Service Class Paolicy

Validate container setup

L]
Workflows » Performs the base setup for running zOSCP - Workflow_0 » 1. Validate your BPXPRM:xx parmlib is setup for zOSCP
a r l | | I a n g e S S e p S - Properties for Workflow Step 1. Validate your BPXPRMxx parmlib is setup for zOSCP

Notes Perform

General Details Dependencies

) Z O SC P re q u i r e S U F S’ T F S’ a n d oo etens :eev\:':-:nl:::::r‘:it:::strud\uns provided below have been performed on LOCAL.SY1, then clic
PROC filesystems set in
BPXPRMxx

zOSCP requires the UFS, TFS and PROC filesystems

To activate the union filesystem, add the following to your BPXPRM:xx PARMLIE membar:

d /p ro C n e e d S to ex iSt b efo re FILESYSTYPE TYPE(UFS) ENTRYPOINT(BPXUNINT)

To activate the temporary filesystem, add the following to your BPXPRM:x PARMLIB member.

P RO C C a n b e m 0 u nte d FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

To activate the PROC filesystem, add the following fo your BPXPRMxx PARMLIB member:
* SMFLIMxx needs to be updated
tO S u p po rt Ca C h e S m a p pe d Workflows » Performs the base setup for running 20SCP - Workflow_0 » 2. Setup SMFLIM:xx for zOSCP

Properties for Workflow Step 2. Setup SMFLIMxx for zOSCP
about the 2GB address range oo

Review Instructions Review Instructions

FILESYSTYPE TYPE(PROC) ENTRYPOINT(EFXUPINT)

MNotes Perform

Review and confirm the instructions provided below have been performed on L{

Instructions:

There is a storage requirement to support caches mapped above fhe 2 GB ad
above the 2 GB address range, by specifying the following in your SMFLIM:x

REGION JOBNAME(™) MAXSHARE(262144)

To modify SMFLIN:x PARMLIB seftings without reloading the inifial program,

PATH update (step 3)

* The /usr/lpp/IBM/zoscp/bin should be added to the PATH
environment variable in /etc/profile

Workflows
Workflows » Performs the base setup for running 2O0SCP - Workflow_0 » 3. Add the z0SCP product directory to PATH= environment variable in fetc/profile
Properties for Workflow Step 3. Add the zOSCP product directory to PATH= environment variable in /etc/profile

General Details Dependencies Notes Perform Status nput Variables Feedback

> Review Instructions Review Instructions

Review and confirm the instructions provided below have been performed on LOCAL.SY1, then click Finish to mark the ste|

Instructions:

Add fusrlpp/IEMizoscp/bin to your PATH environment variable in fetcfprofile as like the example below:

Add zoscp exscutables to PATH
PATH=3PATH-/usr/lpp/IEM/Z0scpi/bin

Security Setup (step 4)

* This step points to the sample job
SYS1.SBCZSMPL(BCZSECS1) which needs to be reviewed,
modified and run by a z/OS Security Administrator.

* The security job creates a PODMAN group and gives it access to the
CONTAINERS SAF resource in the UNIXPRIV class.

* This gives non-UID 0 users access to run containers on z/OS with tools
like podman.

/* Create group that will be given access to run podman

/* ADDGROUP PODMAN OMVS(AUTCGID)

/* RDEFINE UWIXPRIV CONTAIMERS UACC(MOME)

JF* PERMIT COWTAIMERS ID(PODMAM) ACCESS(READ) CLASS{UNIXPRIV)
/% SETROPTS RACLIST{UNIXPRIW)} REFRESH

/* To connect a user ID to the PODMAN group, run:
F#* CONNECT <userid> GROUP(PODMAN)
/# Where the <userid: is the user ID you want to connect to the

/* PODMAN group.

Filesystem Setup (steps 5,6,7)

* These automated steps setup both permanent and temporary
filesystems used by podman:

 /var/lib/podman : permanent filesystem used by an administrator to store
images for other users of podman

» /var/run/containers : tfs used for container metadata for uid=0
 /var/run/runc : tfs used by runc for uid=0
 /var/run/user : tfs where user specific metadata is stored

 After /var/lib/podman is setup, a bind mount is used to share
/var/lib/podman/storage read-only with unprivileged users. The bind
mount is created at /var/share/containers/storage.

 /var/share/containers/storage is the default additional image store
for unprivileged users on z/0S.

Configuration Files (step 8)

* This step copies default container configuration files to the
appropriate location on the system:
 containers.conf : default configuration options for podman
* mounts.conf : default mounts for podman
* registries.conf : container registry configuration
* storage.conf : container storage options

* policy.json : specifies policy for accepting images. Note that the default we
provide rejects images from all registries. The podman trust command can be
used to trust a registry, which will update this file and allow images to be
pulled from that location.

* If these files already have been copied, no copy is done.

Networking Setup (step 9,10

L Th t th Waorkflows » Performs the base setup for running zOSCP - Workflow_0 » 10. Perform appropriate setup for container networkin: Settings | Hel|
ese Ssteps go over tne P for running zOSCF - Warkflow_0. » 10. Perfor approprise setup g gs Help

Properties for Workflow Step 10. Perform appropriate setup for container networking

configuration updates required ... w. oo pr—
to S u p po rt CO nta i n e r ' Input Variables Review Instructions

v’ General To proceed with the guided path through creating and submitfing the JCL on LOCAL.SY1, click Next. Or, you can
.
n etWO r k I n O n Z O SC P = Review Instructions choose to bypass this step. If so, first review and confirm that the instructions below are complete. Then, click
g . Create JOB statement Finish to mark the step complete.
Review JCL

* VIPARANGE ZCONTAINER IP h
Instructions:
a d d re S S ra n e S n e e d to b e CNI plugins are shipped in the directory fusr/ipp/IBM/zoscp/bin which are used to support networking for
g zOSCP. This workflow step will create a copy of the IBM provided configuration file that uses the CNI plugin.
By default, IPv4 networking is enabled in the CNI configuration. If IPv6 networking is desired, then select IPv6

. in the drop down to enable IPvE networking in the CNI configuration. Note that this will disable IPv4
S et u p m a n u a y I n t e TC P I P networking. You can update this later on by changing the IPv4 and IPv6 settings in the configuration file to true

or false.

: The configuration file that will be created is /etc/cni/net.d/1 0-zoscni.conflist
profile statement. " |

In addition to performing this workflow step, you will also need to configure a range of IP addresses for zOSCP
Refer to the VIPARANGE ZCONTAINER TCP/F profile statement in the z/OS Communications Server: IP
Configuration Reference.

This step should be run from a user that has a UID of 0 or has access to the SAF resource BPX.SUPERUSER
in the FACILITY class.

WLM Configuration (step 11

* This is a manual step that provides instructions on how WLM can be

used to classify zOSCP workloads.

* The SYSCNTNR service class or a container qualifier can be used to

classify the work.

Workflows » Performs the base setup for running 2O0SCP - Workflow_0 » 11. Setup the WLM Service Class Policy
Properties for Workflow Step 11. Setup the WLM Service Class Policy

General Details Depen Notes Perform Status nput Variables

Review Instructions Review Instructions

Review and confirm the instructions provided below have been performed on LOCAL.8Y1, then click Finish to mark the step complete.

Instructions:

WLM can be used to classify 20SCP workloads.

Setting

By default, zZOSCP work will run in service class SYSOTHER, which has a discretionary goal. If this is not appropriate for your environment, you can use WLM to create the

SYSCNTNR service class or use a container qualifier to classify the work.

Creating the SYSCNTNR service class can be useful to ensure that zOSCP work, by default, does not get assigned to the SYSOTHER service class. Using a container

qualifier can be useful if you have multiple sets of zOSCP work with different reguirements - a descriptive name can be given to each group of requirements.

Installation Verification (step 12)

* The final step of the workflow runs an installation verification program
(shell script)

* The program does the following checks:

* Checks to make sure all necessary filesystems are mounted and enabled (UFS,
TFS, PROC)

* Checks to make sure install directories exist (/usr/lpp/IBM/zoscp/bin)

e Ensures LE has been setup appropriately to run containers
e Builds and runs a podman “hello world” rexx image

* This program can also be run in the shell outside of the workflow.

Images and Image Management

Overview

* Problem Statement / Need Addressed / User Stories:
e Customers need a “base” environment in their containers

» z/0OS Container Platform target image infrastructure requires special
authority

e Solution:

* IBM provides a “base” image to customers through IBM Cloud Container
Registry

* Benefit / Value:
* Use of “base” image and icr.io is existing/familiar and aids build/debug
» z/OS administrator continues to control security characteristics of system

Image architecture and operating system

* Every OCl image has an architecture and os

$ skopeo inspect --config docker://icr.io/zos

{
"created": "2024-02-15T22:57:27.624488767Z",

"architecture": "s390x",
HOSH : HZOS",

 z/OS Container Platform uses zos on s390x images, not linux images
* Prior to z/OS Container Platform, such images did not exist

Image Locations

Image name Location Description

Foundation image, consisting of a basic z/0S
20S icr. iO/ZOSCp/ZOS :latest UNIX environment with core z/OS programs

and libraries.

Builds on the z/OS base image to provide IBM
. SDK for z/0S, Java Technology Edition, Version
ibmjava icr.io/zoscp/ibmjava:8 J &

8 - 64-bit version and source code for the
sample Java application.

ibm-zcon-server

icr.io/zosconnectunlimited
/ibm-zcon-server:3.0.78

Builds on z/0OS base and Java images to enable
building a z/OS Connect application.

golang

icr.io/zoscp/golang:latest

Go (golang) is a general purpose, higher-level,
imperative programming language.

location, key, and sample command provided in associated product memo

zOSCP z/OS Control Plane Appliance (zCPA)

Overview

* Problem Statement:
Need to provide control plane node for z/OS-based Kubernetes cluster

e Solution:

Create Linux-based appliance that runs within z/OS address space that can
host the control plane node infrastructure

* Benefit / Value:
Ensure all Kubernetes cluster nodes for zOSCP reside on z/0S systems

Solution

Create Linux-based appliance that serves as a control plane node

z/0S

2/OSMF -
Workflows i

VSAM
Datasets
(Linux Disks)

ZCPA files

Solution...

Possible configurations

Solution...

NodePort load balancing

.'."z/OS'Worker Node .°

Solution...

High Availability configuration

Benefits

Leverage Sysplex Distributor for High Availability load balancing

z/0S

Sysplex Distributor

z/0S

z/0S

zCPA workflows

zCPA Provisioning workflow

Workflows » Provision a Control Plane Appliance (zCPA) Settings | Help
Provision a Control Plane Appliance (zCPA)
Notes | History

» Workflow Details

‘Workflow Steps
Actions ~ | Search [T Al step content (2)

Main Provisioning Steps

» No filter applied

— State No. Title CalledWorkflow Automated Use RunAsUser ID Owner Skill Category

a Filter Filter Filter Filter Filter Filter Filter Filter

B s i TS o o e Gather configuration information for
[CJ =31in Progress 1 Gather and validate z/OS Control Plant d

Appliance instance properties . ZCPA bei ng pr‘OViSiO ned

O Not Read) 2 P /OS Corntrol Pl i . N .
=it e e o et Determines latestinstalled version
[T} % Not Ready 3 1 Create Z/OS Control Plane Appliance

instance configuration

Allocate and mount zCPA-specific zFS

[C] % Not Ready 4 w Allocate and load VSAM data sets for the ibmuser System
2/0S Control Plane Appliance disk . . .
images i * Holds configuration files and cached
[T & Not Ready 5 ™ S;ﬁzr;:;pz{:;ﬂ;ai:gl;z;an Z/OS Control ibmuser i n put fo r su bseq ue nt WO r.kﬂows

[C] % Not Ready 6 w (Optional) Create sample MOUNT No ibmuser System
command to add 2/OS Control Plane

Appliance zFS filesystem to BPXPRMxx

Create configuration files for zCPA being
provisioned

Allocate and build VSAM datasets from
provided zCPA image files
* Serves as Linux filesystems for zCPA

Total: 22 Selected: 0

Return to Workflows Refresh Last refresh: Jul 9, 2024, 12:42:00 PM local time (Jul 9, 2024, 4:42:00 PM GMT)

We

lo

Workflows Provision a Gontrol Plane Appliance (zCPA} # 1.2. Gather 2/0S Control Plane Appliance instance properfies

Properties for Workflow Step 1.2. Gather z/0S Control Plane Appliance instance properties

General Details Dependencies Noltes Perform

" Input Variables

+ Z/08 Control Plane
Appliance General
‘Configuration

/08 Control Plane
Appliance General Data
Set Configuration

Z/0S Control Plane
Appliance CPU and
Memory Gonfiguration

> z/OS Control Plane
Appliance Network
‘Configuration

<

<

2/08 Control Plane
Appliance Volume Serial
Data Set Configuration

/08 Control Plane
Appliance SMS Managed
Data Set Configuration

Review Instructions

Close

Input Va

Input Variables - z/OS Control Plane Appliance Network Configuration

Enter the variable values for this input category.

* IPv4 Address: @ - IPv4 address for the zCPA instance (as defined by a VIPARANGE ZCPA TCF/IP profile statement):

0 <

aox

Settings | Help

IPv4 dynamic VIPA assigned from

<4—
Sysplex Distributor IPv4 Address: @ - IPv4 adaress of the Sysplex Distributor DVIPA for the zCPA instance:

TCP/IP Stack Name: @ - 2/0S TCP/iP stack name:

* MTU Size: (D) - The MTU to use for nefwork communication with the zCPA instance:
| 1402

< Back Next > Save Finish Cancel

VIPARANGE ZCPA statement in the
TCP/IP profile

I~ IPv4 distributable dynamic VIPA assigned
from VIPADISTRIBUTE EXTTARG
statement in TCP/IP profile

zCPA Provisioning workflow — filesystem configuration

Workflows

‘Workflows » Provision a Control Plane Appliance (zCPA) » 1.2. Gather z/OS Control Plane Appliance instance properties

Properties for Workflow Step 1.2. Gather z/0S Control Plane Appliance instance properties

General Details Dependencies Notes Perform Input Variables Fee

" Input Variables

+ Z/08 Contral Plane
Appliance General
‘Configuration

Z/08 Control Plane
Appliance General Data
Set Configuration

<

z/08 Control Plane
Appliance CPU and
Memery Configuration

<

z/0S Control Plane
Appliance Network
Configuration

<

2/0S Control Plane
Appliance Volume
Serial Data Set
Configuration

2/08 Control Plane
Appliance SMS Managed
Data Set Configuration

Revisw Instructions

Close

Input Variables - z/0OS Control Plane Appliance Volume Serial Data Set Configuration

Enter the variable values for this input category.

Temporary Work Violume Serial @ - The volume for temporary dala sets for unpacking zGPA binaries:
r d

—-ox|

Settings | Help

Temporary volume to recombine and

44—

Root Volume Serial @ - The volume for the root filesystem for the ZzCPA instance:

Config Volume Serial: g) - The volume for the conffg filesystem for the zCPA instance

uncompress zCPA filesystems

Volume(s) to store VSAM files

Data Volume Serial: (i} - The volume for the data filesystem for the ZGPA instance:
Diog Volume Serial: @ - The voiume for the diog filesystem for the ZCPA instance:

ZFS Filesystem Volume Serial: @ - The volume for the zFS filesystem for the zCPA instance:
i <

representing the zCPA mounted
filesystems

Volume to allocate zFS for the zCPA

<

< Back Next > Save Finish Cancel

instance

* Needs tobe large enough to hold any
zCPA dumps along with configuration
files

SMS-managed storage can be used

Starting the zCPA

Dynamic VIPA
created from
VIPARANGE ZCPA
TCP/IP profile
statement

APAR level and
version of the zCPA
instance

Latest installed APAR
level and version for
the zCPA

Only provisioning
workflow has been
performed on the
zCPA instance

zCPA is now ready to
start control plane
node

Thank you

Redelf Janfden
Contact
E-Mail redelf.janssen@de.ibm.com

Phone +49-171-5538587

mailto:first.lastname@ibm.com

65

	Default Section
	Slide 1: 99. GSE zExpertenForum der z/OS Arbeitsgruppe Vitznau, 23.10.2024 z/OS Container Platform — Redelf Janßen IBM Z Brand Technical Specialist
	Slide 2: Statement of direction
	Slide 3: What is this presentation NOT about?
	Slide 4: Comparing containers and virtual machines
	Slide 5: What are containers
	Slide 6: Container “Genealogy”
	Slide 7: Key benefits of containers – skills & consistency
	Slide 8: Containers are based on Images
	Slide 9: What are z/OS containers?
	Slide 10: How scalable is this?
	Slide 11: Container orchestration with Kubernetes
	Slide 12: Kubernetes objects Pods
	Slide 13: Kubernetes objects Nodes and Cluster
	Slide 14: Kubernetes objects Deployments
	Slide 15: z/OS approach in using open-source technologies
	Slide 16: z/OS Containers Architecture
	Slide 17: z/OS Containers Architecture
	Slide 18: z/OS Containers Architecture
	Slide 19: z/OS Containers Architecture
	Slide 20: z/OS Containers Architecture
	Slide 21: z/OS Containers Architecture
	Slide 22: z/OS Container Platform today July ‘24
	Slide 23: zOSCP CD1 Support
	Slide 24: z/OS Container Dependencies provided in z/OS
	Slide 25
	Slide 26
	Slide 27: Implementation
	Slide 28: Implementation (cont.)
	Slide 29: Implementation (cont.)
	Slide 30: How to get started?
	Slide 31: Installation and Configuration
	Slide 32: Overview
	Slide 33: z/OSMF Workflow
	Slide 34: Parmlib Changes (steps 1-2)
	Slide 35: PATH update (step 3)
	Slide 36: Security Setup (step 4)
	Slide 37: Filesystem Setup (steps 5,6,7)
	Slide 38: Configuration Files (step 8)
	Slide 39: Networking Setup (step 9,10)
	Slide 40: WLM Configuration (step 11)
	Slide 41: Installation Verification (step 12)
	Slide 42: Images and Image Management
	Slide 43: Overview
	Slide 44: Image architecture and operating system
	Slide 45: Image Locations
	Slide 46: zOSCP z/OS Control Plane Appliance (zCPA)
	Slide 47: Overview
	Slide 48: Solution
	Slide 49: Solution…
	Slide 50: Solution…
	Slide 51: Solution…
	Slide 52: Benefits
	Slide 53
	Slide 54: zCPA Provisioning workflow
	Slide 55: zCPA Provisioning workflow – network configuration
	Slide 56: zCPA Provisioning workflow – filesystem configuration
	Slide 57: Starting the zCPA
	Slide 64: Thank you
	Slide 65: IBM sign-off

