
99. GSE zExpertenForum der z/OS
Arbeitsgruppe

Vitznau, 23.10.2024

z/OS Container Platform
—

Redelf Janßen
IBM Z Brand Technical Specialist

Statement of direction

On June 23, 2020, IBM announced in

https://www.ibm.com/common/ssi/cgi-

bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letter

num=ENUS220-033

the following Statement of Direction:

– IBM intends to deliver a container runtime for IBM z/OS® in support of Open

Containers Initiative compliant images comprising z/OS software.

– IBM intends to deliver Kubernetes orchestration for containers on z/OS.

– Website: https://www.ibm.com/products/zos-container-platform

– Product ID: 5655-MC3 (5655-MC4 S&S)

2

✓ z/OS Container Platform,
CD1 July ‘24

✓ z/OS Container Platform,
GA March ‘24

https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&appname=gpateam&supplier=897&letternum=ENUS220-033
https://www.ibm.com/products/zos-container-platform

What is this presentation NOT about?

This presentation is NOT about zCX (z/OS Container Extensions).

Recall zCX is:

– Linux running in a z/OS address space

– Providing either Docker or OpenShift as the container runtime

– Allowing you to deploy Linux on IBM Z containers in that address space

z/OS Containers is about:

– Providing a container runtime (OCI-compliant) that runs natively on z/OS

– Allowing you to build and deploy native z/OS applications as containers

– Subsequently, orchestrate those containers with a Kubernetes orchestration engine.

3

Comparing containers and virtual machines

VMs are complete virtualized stacks, each running

their own OS, middleware and applications. Their size

is typically measured by the gigabyte.

Containers merely package the app and all the files

necessary to run; they share a single instance of an

operating system (OS). Container images are

measured by the megabyte.

4

Virtual Machines Containers

Hypervisor

Guest
OS

Guest
OS

Guest
OS

App App App

Libs Libs Libs

Host Operating System

App App App

Container Engine

Libs Libs Libs

What are containers

– Containers are a packaging mechanism including all

application code and required dependencies

– Containers utilize operating system facilities to run

applications in isolated environments

– While containers enable decoupling of applications

from the environment in which they run, they are

operating system and hardware specific

– Easy and consistent deployment on different targets

5

Dev Prod Public Cloud

App

Libs

Container “Genealogy”

6

Containers

Linux

x86 x86 Linux Server

s390x

zCX

Linux on Z

Windows x86 Windows Server

z/OS s390x z/OS

Operating System HW-Architecture Deployment Option

Today’s topic

Key benefits of containers
– skills & consistency

Standardization

Common model for packaging

and deployment of applications

across the IT landscape

Portability

Consistency for movement

across z/OS Dev / Test / Prod

Improved quality

Containers are fully contained

including application,

middleware, and all dependent

configuration information

Agility

Deploy application and

provision facilities to support

agile development and meet

developers’ expectations

Isolation / Security

Isolate applications’ execution

environments from each other,

thereby increasing security and

integrity

Orchestration

Use industry standard means

of deployment and

management (ala Kubernetes)

across a broad landscape of

container-supporting platforms

7

Containers are based on
Images

Definition

An image is a lightweight, standalone,

executable package of software that

includes everything needed to run an

application: code, runtime, system tools,

system libraries and settings

Images can only be created or read, but not

modified - they are immutable

To modify an image, a new image need to be

built on top of an existing image

Images become containers at runtime

8

Base 1 FROM ibmjava:8

Application

Execution

2 COPY mywebapp-0.0.2.jar /

3 ENTRYPOINT java -jar
 mywebapp-0.0.2.jar

Layer 1 (r/o)

Layer 2 (r/o)

Layer 3 (r/o)

podman run mywebapp

mywebapp

podman build . -t mywebapp

Runtime FSLayer 4 (r/w)
Containerfile / Dockerfile
(reversed order)

What are z/OS containers?

z/OS containers run on z/OS isolated from each other through z/OS facilities

z/OS containers provide portability and consistency across z/OS LPARS and environments

Examples

– A newly developed Java / WAS (Liberty) application; will be built and deployed as a container from

inception since the application developers come from a distributed background

– Aspirational: A 20-year-old mission critical COBOL application running in CICS® or IMS ; it can be

containerized so that it can be orchestrated (via Kubernetes) with other cloud native container

applications that run on non-z/OS platforms

Enables system programmers to create templates for consumption by developers in a regulated

manner

Allows developers to consume defined resources in a self-service model in an isolated, approved

environment

9

How scalable is this?

Start small with a few containers – “ok”

Growing the size – “hmm”

Adding even more – “how do I manage this?”

10

A solution is needed: Kubernetes

Container orchestration with
Kubernetes

Kubernetes is the de factor standard container

orchestration platform to manages the life cycle of

containers

– Provisioning and deployment

– Availability

– Scalability

– Scheduling on infrastructure

– Health checks

Facilitates declarative management

Widely available open-source component with a large

and rapid growing ecosystem

11

Worker
Node

Kubernetes Control Plane

Worker
Node

Application containers

API

Kubernetes objects
Pods

A Pod is the smallest deployable unit of computing

that can be created and managed in Kubernetes

It represents a single instance of an application

Typically, it consists of a single container

Sometimes it groups multiple, tightly coupled

containers that share the same network and storage

resources

12

z/OS z/OS z/OS
Kubernetes

Control plane

API

kubelet kubelet kubelet

kubectl CLI

Pods

Kubernetes
Control planeKubernetes

Control plane

Kubernetes objects
Nodes and Cluster

Kubernetes runs your workload by placing containers

into Pods to run on worker machines, so called Nodes

A node may be a virtual or physical machine,

depending on the cluster

For z/OS, a node is an LPAR or guest VM running z/OS

A cluster is the control plane with its components

(API-server, scheduler and more) plus a collection of

worker nodes

For HA-reasons, the cluster components typically run

on 3 control plane nodes

13

z/OS z/OS z/OS
Kubernetes

Control plane

API

kubelet kubelet kubelet

kubectl CLI

Worker nodes

Kubernetes cluster

Control plane node

Kubernetes objects
Deployments

A Deployment manages multiple instances of an

application, i.e., pods

The deployment declares how many replicas of an

application should exist

You can scale the number of replicas up or down, on

demand or even automatically

A deployment supports rolling updates while

maintaining the availability of the application

Kubernetes manages replicas towards their desired

status

14

z/OS z/OS z/OS
Kubernetes

Control plane

API

Deployment mywebsrv, replicas=2

kubelet kubelet kubelet

kubectl CLI

z/OS approach in using
open-source technologies

OCI specifies two specifications:

–Image Specification – how to build an image

–Container Runtime – how to run an image in a container

Kubernetes is an open-

source system for

automating deployment,

scaling, and management

of containerized

applications

CRI-O is an open source,

community-driven

container engine and is a

lightweight alternative to

using Docker as the

runtime for Kubernetes

runC is a universal

container runtime and a

CLI for spawning and

running containers

according to the Open

Container Initiative (OCI)

specification

Podman (POD manager)

is an open source CLI

designed to make it easy to

find, run, build, share and

deploy applications using

OCI-compliant containers

and container images

15

Formed under the Linux Foundation

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

User

Kubernetes
API

z/OS Container Platform (zOSCP)

16

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

z/OS Container Platform
(zOSCP)

User

Kubernetes
API

• The kubelet is responsible for
managing the deployment of
pods to Kubernetes nodes

• It receives commands from
the API server and instructs
the container runtime to start
or stop containers as needed

• One per z/OS LPAR

• Will run as a started task
(daemon) on z/OS

17

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

z/OS Container Platform
(zOSCP)

User

Kubernetes
API

• CRI-O stands for Container
Runtime Interface (CRI) for
OCI-compatible runtimes

• CRI-O is an implementation
of the Kubernetes Container
Runtime Interface (CRI) that
will allow Kubernetes to
directly launch and manage
OCI-compliant containers

• One per z/OS LPAR

• Will run as a started task
(daemon) on z/OS

18

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

z/OS Container Platform
(zOSCP)

User

Kubernetes
API

• runc is a CLI tool for
spawning and running
containers according to
the OCI specification

• Provides all the low-
level functionality for
containers, interacting
with low-level operating
system features to
create and run
containers as z/OS
address spaces

19

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

z/OS Container Platform
(zOSCP)

User

Kubernetes
API

• Podman is the main CLI tool
used to manage the entire
lifecycle of a container

• Application Developers will
use this to build images and
deploy them as containers

• System Admins will use this
to manage containers and
view their status

• Over 80+ subcommands

20

z/OS Containers Architecture

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman
Podman CLI

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

Utility CLI’s

z/OS Container Platform
(zOSCP)

User

Kubernetes
API

• The Kubernetes control plane
orchestrates containers across
a cluster of worker nodes

• In our case, the Kubernetes
control plane does not natively
run “on” z/OS, but rather “on”
Linux in a zCX-like address
space

• Since this is shipped as an
appliance, we refer to it as a
Control Plane Appliance or
zCPA, for short

• A Kubernetes cluster needs to
be made up of an odd number
(three or five) of control plane
nodes. Three is enough for
most use cases; five will give
you better availability

• Hence you could have one or
more running in a z/OS LPAR

21

z/OS Container Platform today
July ‘24

z/OS 2.5 and z/OS 3.1

provide among others

– New UNIX System

Services syscalls (75)

– Various enhancements

to existing syscalls and

C-header files

– Linux concepts of

namespaces for

isolation

– Kubernetes v1.29

22

Kubernetes
Worker

(kubelet)
CRI-O runc

REST
APIs

CRI
gRPC

Fork/
Exec

UNIX

Kernel

Fork/
Clone

Container Host

Podman

z/OS container host
Linux on z/OS
address space

Kubernetes
Control Plane

Appliance

z/OS UNIX
Kernel

Miscellaneous Utilities
(skopeo & umoci)

z/OS Container Platform (zOSCP)

zOSCP CD1 Support

• Available with PTFs for the following 12 APARs:

• OA66262

• OA66266

• OA66267

• OA66268

• OA66269

• OA66270

• Available since June 28, 2024

23

• OA66361

• OA66362

• OA66363

• OA66364

• OA66365

• OA66366

z/OS Container Dependencies provided in z/OS

Enhancements to existing syscalls & headers

• Implement BPXK_AUTOCVT for AF_LOCAL sockets

• IP_TTL flag for setsockopt() & getsockopt()
• New flags for open()

• Support “e” flag on fopen()

• New flags for socket() & socketpair()
• NAME_MAX in limit.h

• PATH_MAX in limit.h
• NI_MAXHOST in netdb.h

• NSIG in signal.h

• tm_gmtoff in time.h
• new flags on mount()

• Remount on TFS
• new flags on umount()

• Update to gethostname()
• New flags in mmap()

• PROC_SUPER_MAGIC in sys/statfs.h

• openat()

• openat2()
• syncfs()

• getrandom()

• getentropy()

• listxattr()
• llistxattr()

• lremovexattr()

• lsetxattr()
• removexattr()

• setxattr()
• lgetxattr()

• getxattr()

• flock()
• prlimit()

• umount2()
• nanosleep()

• Linux variant of mount()
• Linux variant of umount()

• pthread_condattr_setclock()

• Linux variant of localtime_r()

New Syscalls (75)

• fgetxattr()

• flistxattr()
• fremovexattr()

• fsetxattr()

• epoll_create()
• epoll_create1()

• epoll_ctl()
• epoll_pwait()

• epoll_wait()

• eventfd()
• fstatfs()

• statfs()
• dirfd()

• wait4()
• futimesat()

• utimensat()

• clock_gettime()

• futimes()
• lutimes()

• strchrnul()

• fdatasync()

• inet_aton()
• pivot_root()

• accept4()

• getline()
• sethostname()

• clone()
• unshare()

• setns()

• prctl()
• pipe2()

• dup3()
• inotify_init()

• inotify_init1()
• inotify_add_watch()

• inotify_rm_watch()

• memfd_create()

• faccessat()

• fchmodat()
• fchownat()

• fstatat()

• linkat()
• mkdirat()

• mkfifoat()
• mknodat()

• readlinkat()

• renameat()
• renameat2()

• symlinkat()
• unlinkat()

• __fchattrat()
• dprintf()

• asprintf()

• vasprintf()

• WLM support for new Service Class

• Hybrid networking support
• Update to netstat utility

z/OS Unique Technology for Containers

• IPC namespace

• PID namespace
• UTS namespace

• Mount namespace

• Union file system
• /proc file system

• Namespace utilities
• nsenter

• unshare

• lsns

Linux Concepts

Possible IBM zOSCP Configurations 1 of 2 (including Variations thereof)

Single Instance Configuration

Unbalanced Configuration Unbalanced Configuration+

Single Instance Configuration+

Possible IBM zOSCP Configurations 2 of 2 (including Variations thereof)

Balanced Configuration Balanced Configuration+

Implementation

Application running in containers will be address spaces on z/OS.

z/OS has implemented the Linux concept of namespaces for isolation and virtualization. This is above and

beyond the isolation already available on z/OS for address spaces.

– PID namespace - allows a process running inside a PID namespace to seem as if it is the only process

running in that space and therefore would have a PID=1. Of course, from the outside (of the PID

namespace) it will have a real PID number, but on the inside, it will have a PID of 1.

– IPC namespace - will allow Inter-Process Communication (IPC) to only happen between the processes

running within that IPC namespace. The types of communication we are talking about are the POSIX

IPC communication schemes: semaphores, shared memory and message queues. Cross-memory and

common storage are not affected.

Implementation (cont.)

UTS namespace - UNIX Time Sharing namespace allows a process to set the hostname of that

environment. This is needed because the container runtime will assign a random ID to this but can be

over-ridden in the future.

Mount namespace - Essentially allows for a scoping of the file system that the processes within that

mount namespace will be able to see. To establish a mount namespace, you also need to have

pivot_root() capability (essentially another flavor of chroot()) whereby you are changing the root directory

to a sub-portion of the file system hierarchy that has just been established. That will be file system view

the process(es) will have. The other new capability that is needed for mount namespaces is bind mounts,

whereby you mount things that are outside of the mount namespace file system to inside of the

namespace.

Implementation (cont.)

– cgroup namespaces - We don't have cgroups on z/OS and so having a cgroup namespace on z/OS

doesn't make sense. However, we have integrated with WLM, whereby one could specify a specific

service they want the process (address space of a container) to run under, or if set up, we would run

it in a specific WLM service class created just for containers. If nothing is set up, then we will take the

lowest service class (batch).

– Network namespace - There is no network namespace support on z/OS. However, upon creation of a

container or a pod, a dynamic VIPA is assigned to that new instance and that gives the appearance of

network isolation which is very similar to what network namespaces provide on Linux.

– User namespace - We chose not to implement a user namespace, because we didn’t want to erode

the concept of “centralized security” on z/OS. We want applications running in containers to be

governed by the same security database, as when applications would be running outside containers.

– We may need to invent new z/OS-specific namespaces in the future.

N
o

t im
p

le
m

e
n

te
d

 o
n

 z/O
S

How to get started?

Development & Test

– Leverage an isolated self-service environment

for development and test

– Employ enterprise-wide tool and process

standardization enabling parallel development

and continuous integration

– Spin up/down containers to introduce new

features and facilitate changes

Access current base images (z/OS, Java, Golang,

z/OS Connect)* from IBM Container Registry (ICR)

Create your own application image on top of a

base image using podman or umoci

Use skopeo to maintain your own image registry

Containers can be started and stopped using

podman from the UNIX System Services

command line

30

* More images will be added over time

Installation and Configuration

Overview

• Workflow is provided to perform configuration of zOSCP:
• /usr/lpp/IBM/zoscp/workflows/zoscp_general.xml

• Documentation references workflow – it is expected that the end user
go through the workflow for configuration.

• Workflow is scoped at a system level and should be performed on
each system where zOSCP is to be configured.

• Some steps are manual and require updates to be made to parmlib or
submit a security sample job.

• Expectation is the workflow is run by a uid=0 user or one that has
access to BPX.SUPERUSER.

z/OSMF Workflow

• Steps are expected to be completed in
order, with some steps disabled until prior
steps are completed.

• Some steps use inline JCL, while others call
a shell script with BPXBATCH

Parmlib Changes (steps 1-2)

• zOSCP requires UFS, TFS, and
PROC filesystems set in
BPXPRMxx

• /proc needs to exist before
PROC can be mounted

• SMFLIMxx needs to be updated
to support caches mapped
about the 2GB address range

PATH update (step 3)

• The /usr/lpp/IBM/zoscp/bin should be added to the PATH
environment variable in /etc/profile

Security Setup (step 4)

• This step points to the sample job
SYS1.SBCZSMPL(BCZSECS1) which needs to be reviewed,
modified and run by a z/OS Security Administrator.

• The security job creates a PODMAN group and gives it access to the
CONTAINERS SAF resource in the UNIXPRIV class.

• This gives non-UID 0 users access to run containers on z/OS with tools
like podman.

Filesystem Setup (steps 5,6,7)

• These automated steps setup both permanent and temporary
filesystems used by podman:

• /var/lib/podman : permanent filesystem used by an administrator to store
images for other users of podman

• /var/run/containers : tfs used for container metadata for uid=0

• /var/run/runc : tfs used by runc for uid=0

• /var/run/user : tfs where user specific metadata is stored

• After /var/lib/podman is setup, a bind mount is used to share
/var/lib/podman/storage read-only with unprivileged users. The bind
mount is created at /var/share/containers/storage.

• /var/share/containers/storage is the default additional image store
for unprivileged users on z/OS.

Configuration Files (step 8)

• This step copies default container configuration files to the
appropriate location on the system:

• containers.conf : default configuration options for podman

• mounts.conf : default mounts for podman

• registries.conf : container registry configuration

• storage.conf : container storage options

• policy.json : specifies policy for accepting images. Note that the default we
provide rejects images from all registries. The podman trust command can be
used to trust a registry, which will update this file and allow images to be
pulled from that location.

• If these files already have been copied, no copy is done.

Networking Setup (step 9,10)

• These steps go over the
configuration updates required
to support container
networking on zOSCP.

• VIPARANGE ZCONTAINER IP
address ranges need to be
setup manually in the TCP/IP
profile statement.

WLM Configuration (step 11)

• This is a manual step that provides instructions on how WLM can be
used to classify zOSCP workloads.

• The SYSCNTNR service class or a container qualifier can be used to
classify the work.

Installation Verification (step 12)

• The final step of the workflow runs an installation verification program
(shell script)

• The program does the following checks:
• Checks to make sure all necessary filesystems are mounted and enabled (UFS,

TFS, PROC)

• Checks to make sure install directories exist (/usr/lpp/IBM/zoscp/bin)

• Ensures LE has been setup appropriately to run containers

• Builds and runs a podman “hello world” rexx image

• This program can also be run in the shell outside of the workflow.

Images and Image Management

Overview

• Problem Statement / Need Addressed / User Stories:
• Customers need a “base” environment in their containers

• z/OS Container Platform target image infrastructure requires special
authority

• Solution:
• IBM provides a “base” image to customers through IBM Cloud Container

Registry

• Benefit / Value:
• Use of “base” image and icr.io is existing/familiar and aids build/debug

• z/OS administrator continues to control security characteristics of system

Image architecture and operating system

• Every OCI image has an architecture and os
$ skopeo inspect --config docker://icr.io/zos
{

 "created": "2024-02-15T22:57:27.624488767Z",

 "architecture": "s390x",
 "os": "zos",

• z/OS Container Platform uses zos on s390x images, not linux images

• Prior to z/OS Container Platform, such images did not exist

Image Locations

Image name Location Description

zos icr.io/zoscp/zos:latest
Foundation image, consisting of a basic z/OS
UNIX environment with core z/OS programs
and libraries.

ibmjava icr.io/zoscp/ibmjava:8

Builds on the z/OS base image to provide IBM
SDK for z/OS, Java Technology Edition, Version
8 - 64-bit version and source code for the
sample Java application.

ibm-zcon-server
icr.io/zosconnectunlimited
/ibm-zcon-server:3.0.78

Builds on z/OS base and Java images to enable
building a z/OS Connect application.

golang icr.io/zoscp/golang:latest
Go (golang) is a general purpose, higher-level,
imperative programming language.

location, key, and sample command provided in associated product memo

zOSCP z/OS Control Plane Appliance (zCPA)

Overview

• Problem Statement:
Need to provide control plane node for z/OS-based Kubernetes cluster

• Solution:
Create Linux-based appliance that runs within z/OS address space that can
host the control plane node infrastructure

• Benefit / Value:
Ensure all Kubernetes cluster nodes for zOSCP reside on z/OS systems

Solution

Create Linux-based appliance that serves as a control plane node

zCPA

z/OSMF
Workflows

kubeadmz

kam

Linux Kubernetes

Linux Kernel

zCX Virtualization layer

APIs

CRI-O Engine and APIs

Kubernetes
images

VSAM
DatasetsVSAM

Datasets
(Linux Disks)

z/OS

zCPA files

HTTPS RESTAPI server

… Kubernetes Control
Plane

API
serve
r

Admissio
n
controlle
rs

SDAgentkubectl

Solution…

Possible configurations

zCPA

z/OS

Kubernetes Control Plane

zCPA

z/OS

Kubernetes Control Plane

z/OS Worker Node

z/OS

z/OS Worker Node

Solution…

NodePort load balancing

zCPA

z/OS

Kubernetes Control Plane

z/OS

z/OS Worker Node

z/OS Worker Node

z/OS

z/OS Worker Node

Pod Pod

Pod Pod Pod

NodePort service

Solution…

High Availability configuration

zCPA

z/OS

Kubernetes Control Plane

z/OS Worker Node

zCPA

z/OS

Kubernetes Control Plane

z/OS Worker Node

zCPA

z/OS

Kubernetes Control Plane

z/OS Worker Node

z/OS

z/OS Worker Node

z/OS

z/OS Worker Node

z/OS

z/OS Worker Node

Benefits

Leverage Sysplex Distributor for High Availability load balancing

zCPA

z/OS

Kubernetes Control Plane

z/OS Worker Node

zCPA

z/OS

z/OS Worker Node

zCPA

z/OS

z/OS Worker Node

Pod Pod Pod PodPod

NodePort serviceSDagent

Kubernetes Control Plane

NodePort serviceSDagent

Kubernetes Control Plane

NodePort serviceSDagent

Sysplex Distributor

zCPA workflows

zCPA Provisioning workflow

Main Provisioning Steps

Gather configuration information for
zCPA being provisioned
• Determines latest installed version

Allocate and mount zCPA-specific zFS
• Holds configuration files and cached

input for subsequent workflows

Create configuration files for zCPA being
provisioned

Allocate and build VSAM datasets from
provided zCPA image files
• Serves as Linux filesystems for zCPA

zCPA Provisioning workflow – network configuration

IPv4 dynamic VIPA assigned from
VIPARANGE ZCPA statement in the
TCP/IP profile

IPv4 distributable dynamic VIPA assigned
from VIPADISTRIBUTE EXTTARG
statement in TCP/IP profile

zCPA Provisioning workflow – filesystem configuration

Temporary volume to recombine and
uncompress zCPA filesystems

Volume(s) to store VSAM files
representing the zCPA mounted
filesystems

Volume to allocate zFS for the zCPA
instance
• Needs to be large enough to hold any

zCPA dumps along with configuration
files

SMS-managed storage can be used

}

Starting the zCPA
GLZB025I zCX instance ZCPA1: Initialization has started. Code date 06/14/24.
:
EZD1204I DYNAMIC VIPA 9.67.170.243 WAS CREATED USING IOCTL BY ZCPA1 ON TCPIP
EZD0009I CONNECTION TO 9.67.170.243 ACTIVE FOR INTERFACE EZAZCX
:
GLZB022I zCX instance ZCPA1 version information
Bootloader: HZDC7C0 oa66001
 3.7.3 2.4.0
Current Appliance: HCZ1110 OA66262
 4.4.3 1.29.5
 20240630T205536Z
Available Appliance: HCZ1110 OA66262
 4.4.3 1.29.5
 20240630T205536Z
Virtualization Layer: HBB77D0 UJ95425 06/14/24
 Started on 2024/07/02 10:53:25
Workflows Performed:
Provision: 1.0.1 HCZ1110 2024/07/01 16:35
Reconfigure: N/A N/A N/A
Upgrade: N/A N/A N/A
Add Data Disks: N/A N/A N/A
:
GLZB027I zCX instance ZCPA1: IPLing guest.
GLZM012I zCX services for instance ZCPA1 are available.

Dynamic VIPA
created from
VIPARANGE ZCPA
TCP/IP profile
statement

APAR level and
version of the zCPA
instance

Latest installed APAR
level and version for
the zCPA

Only provisioning
workflow has been
performed on the
zCPA instance

zCPA is now ready to
start control plane
node

Thank you

64

Redelf Janßen

Contact

E-Mail redelf.janssen@de.ibm.com

Phone +49-171-5538587

mailto:first.lastname@ibm.com

65

	Default Section
	Slide 1: 99. GSE zExpertenForum der z/OS Arbeitsgruppe Vitznau, 23.10.2024 z/OS Container Platform — Redelf Janßen IBM Z Brand Technical Specialist
	Slide 2: Statement of direction
	Slide 3: What is this presentation NOT about?
	Slide 4: Comparing containers and virtual machines
	Slide 5: What are containers
	Slide 6: Container “Genealogy”
	Slide 7: Key benefits of containers – skills & consistency
	Slide 8: Containers are based on Images
	Slide 9: What are z/OS containers?
	Slide 10: How scalable is this?
	Slide 11: Container orchestration with Kubernetes
	Slide 12: Kubernetes objects Pods
	Slide 13: Kubernetes objects Nodes and Cluster
	Slide 14: Kubernetes objects Deployments
	Slide 15: z/OS approach in using open-source technologies
	Slide 16: z/OS Containers Architecture
	Slide 17: z/OS Containers Architecture
	Slide 18: z/OS Containers Architecture
	Slide 19: z/OS Containers Architecture
	Slide 20: z/OS Containers Architecture
	Slide 21: z/OS Containers Architecture
	Slide 22: z/OS Container Platform today July ‘24
	Slide 23: zOSCP CD1 Support
	Slide 24: z/OS Container Dependencies provided in z/OS
	Slide 25
	Slide 26
	Slide 27: Implementation
	Slide 28: Implementation (cont.)
	Slide 29: Implementation (cont.)
	Slide 30: How to get started?
	Slide 31: Installation and Configuration
	Slide 32: Overview
	Slide 33: z/OSMF Workflow
	Slide 34: Parmlib Changes (steps 1-2)
	Slide 35: PATH update (step 3)
	Slide 36: Security Setup (step 4)
	Slide 37: Filesystem Setup (steps 5,6,7)
	Slide 38: Configuration Files (step 8)
	Slide 39: Networking Setup (step 9,10)
	Slide 40: WLM Configuration (step 11)
	Slide 41: Installation Verification (step 12)
	Slide 42: Images and Image Management
	Slide 43: Overview
	Slide 44: Image architecture and operating system
	Slide 45: Image Locations
	Slide 46: zOSCP z/OS Control Plane Appliance (zCPA)
	Slide 47: Overview
	Slide 48: Solution
	Slide 49: Solution…
	Slide 50: Solution…
	Slide 51: Solution…
	Slide 52: Benefits
	Slide 53
	Slide 54: zCPA Provisioning workflow
	Slide 55: zCPA Provisioning workflow – network configuration
	Slide 56: zCPA Provisioning workflow – filesystem configuration
	Slide 57: Starting the zCPA
	Slide 64: Thank you
	Slide 65: IBM sign-off

