

CF Encryption & SMF Record-signing

99. GSE – Vitznau, Oktober 2024 – Marco Egli

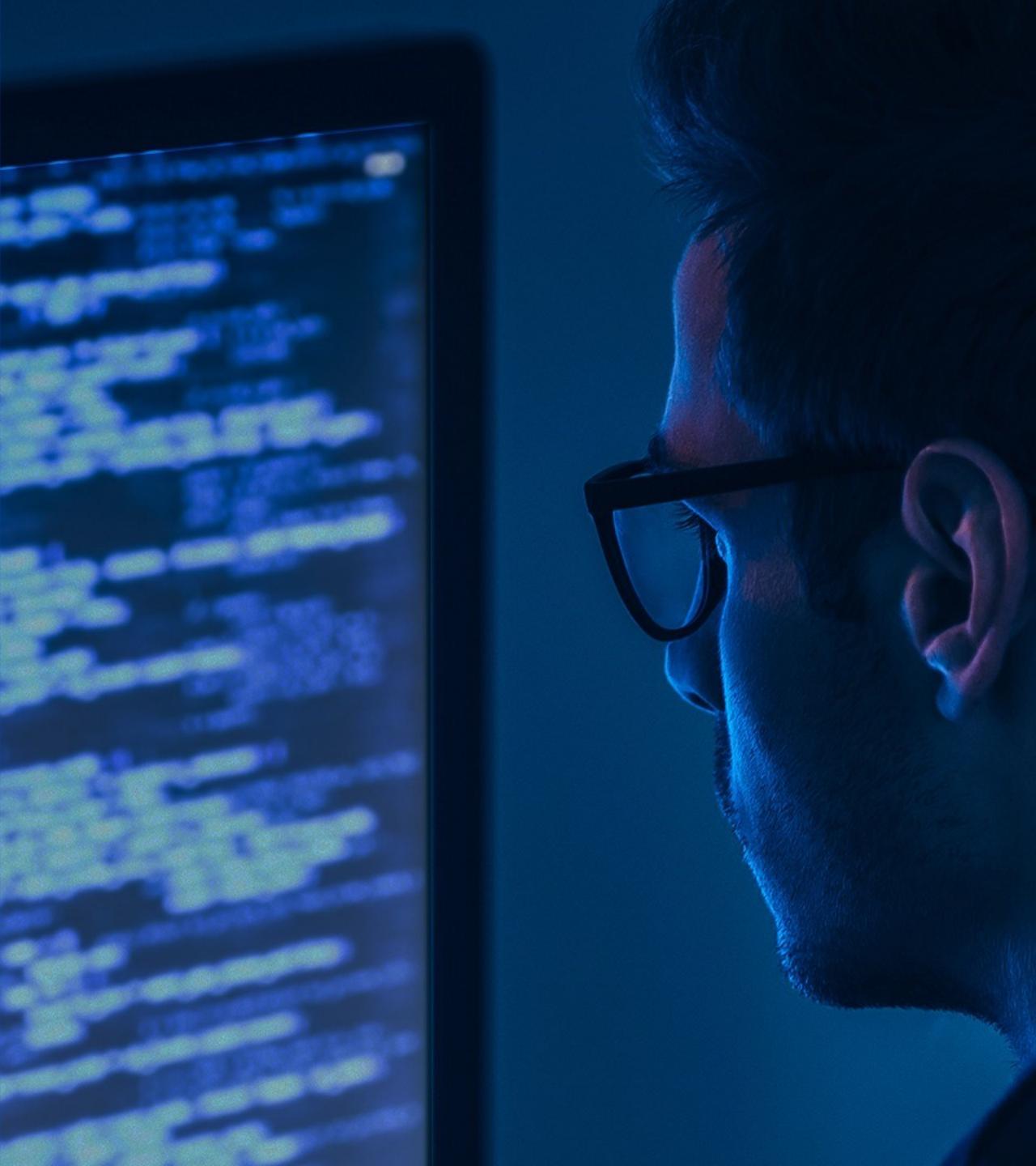
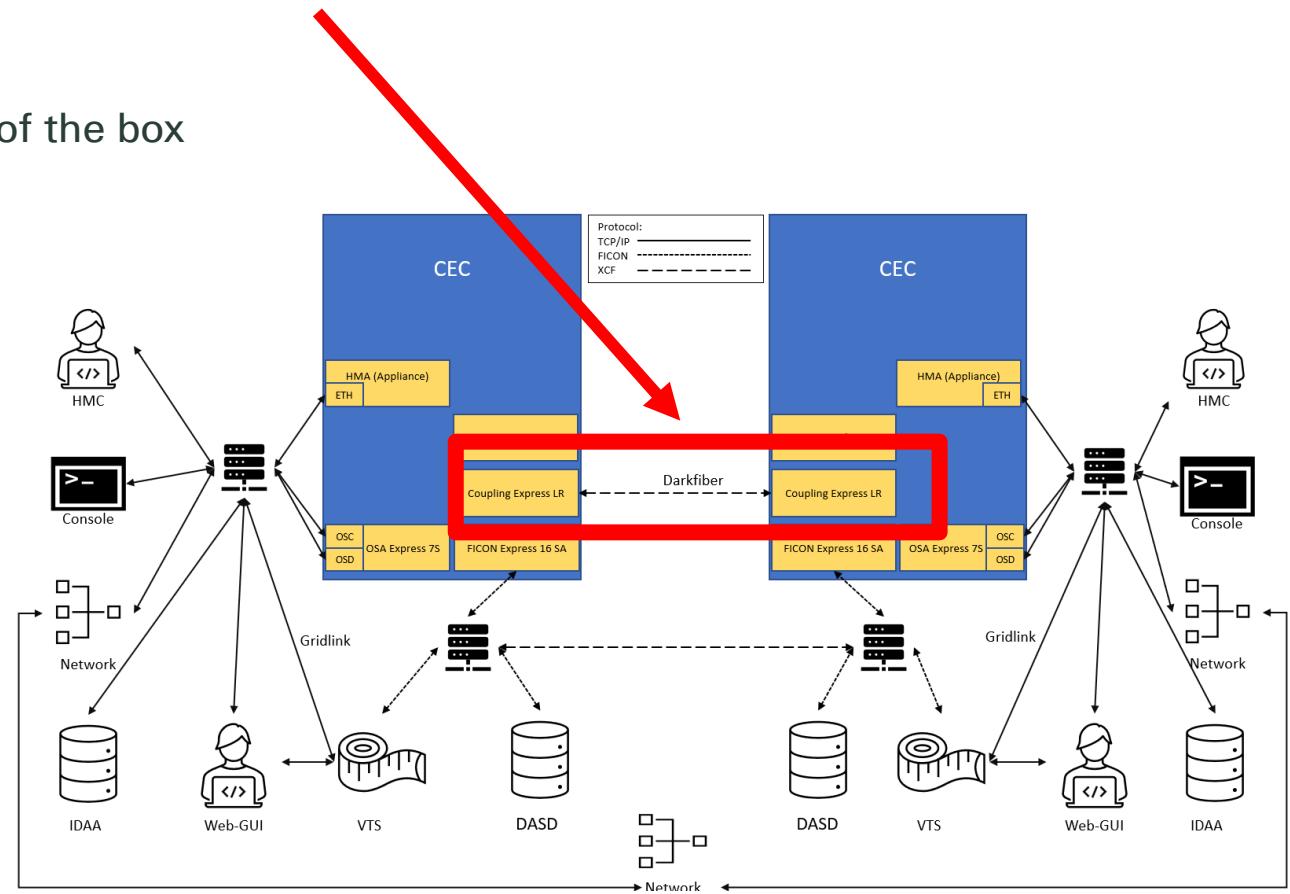


Table of Contents

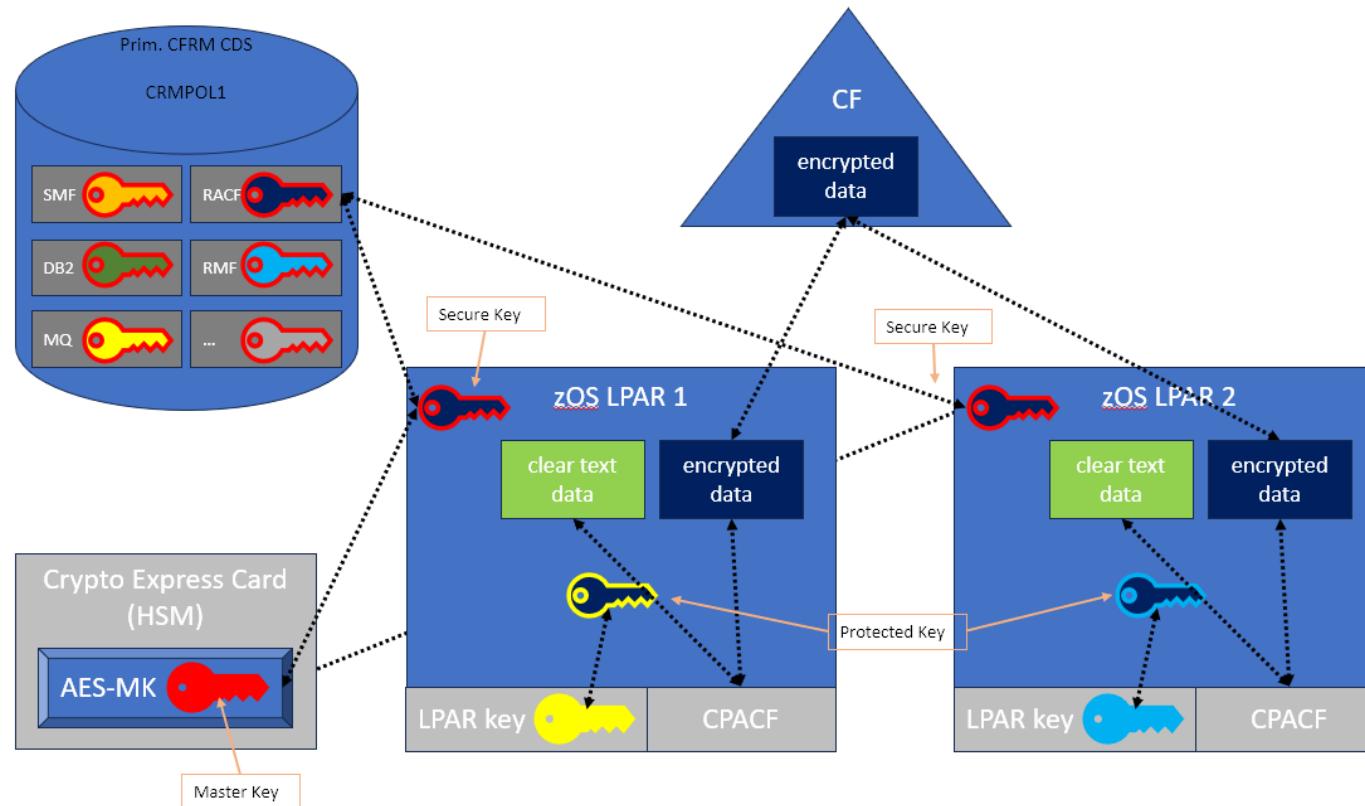
Coupling Facility Structure Encryption	03
SMF Record Signing	21


Coupling Facility Structure Encryption

- Why?
- How?
- Operate it
- What?

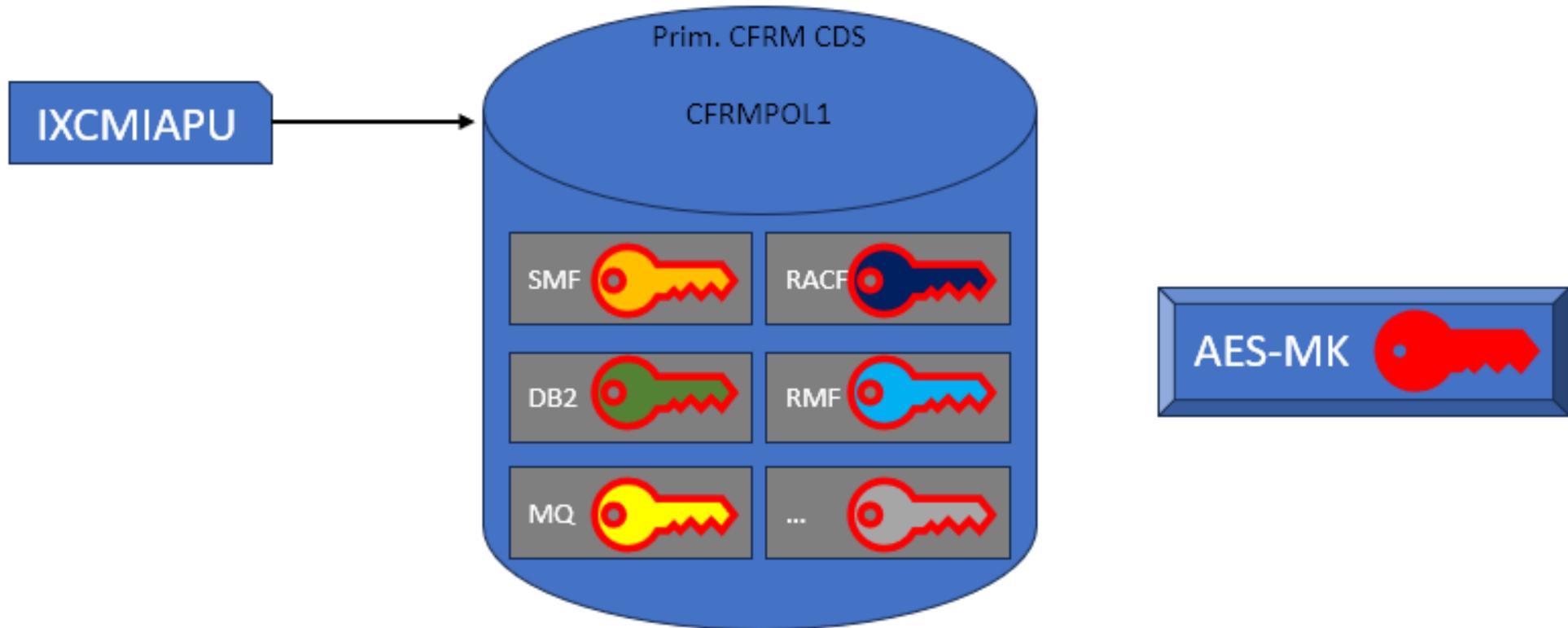
Why should I encrypt my Coupling Facility Structure?

- Coupling Facility links (CF links) cannot be encrypted
 - The protocol used to transfer data between the CF is XCF which does not support encryption out of the box
 - Data transferred through CF links is plaintext
- Other cross connections do support encryption out of the box
- Simple to implement at no extra cost
- Part of pervasive encryption concept
 - Part of the pervasive encryption endeavour
- Quantum safe symmetric encryption
 - AES-256 in-memory
- Holistic encryption
 - Data in flight (on the CF links)
 - Data at rest (in the CF structure itself)

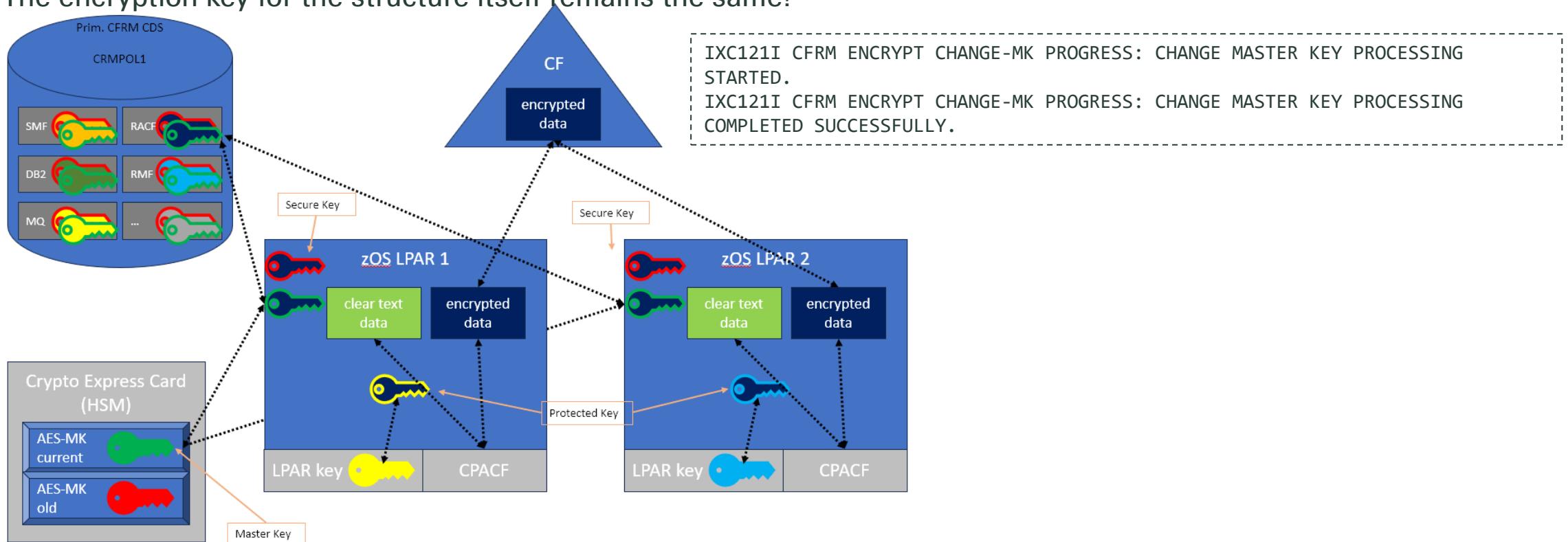


How do I encrypt my Coupling Facility Structure?

- Controlled with Coupling Facility Resource Management (CFRM) Policy Keyword ENCRYPT(NO|YES)
- CFRM does the key management and relies on ICSF
 - CFRM Couple dataset is used to store the keys to en/decrypt the structure (not the CKDS!)
- Changes to encryption state of an allocated structure occur dynamically through structure rebuild processing
 - SETXCF START,REBUILD, DUPLEX,STRNAME=<strname>,KEEP=OLD (if structure is defined as DUPLEX(ENABLED))
 - SETXCF START,REBUILD,STRNAME=<strname>
- Requirements (more later)
 - ICSF and at least AES master key must be set and **equal** in all systems sharing the CFRM CDS
 - At least zOS V2R3 with a z14
 - Authorization for selected RACF CL(CSFSERV) profiles


How do I encrypt my Coupling Facility Structure? → Big picture

- Each structure key exists as a protected key in the LPAR to perform the crypto operations
- Fully transparent to consumers of the structure


How do I encrypt my Coupling Facility Structure? → Key Storage

- Each structure has its own key that is stored in the CFRM CDS and encrypted by the systems AES master key
- Depending on the amount of different CFRM policies (in CDS) multiple copies of the same key exist

How do I encrypt my Coupling Facility Structure? → AES master key change

- When the AES master key changes, all CF structure keys in the CFRM CDS will be re-encrypted.
→ No need to re-encrypt the structure data itself, only the protected key needs to be rewrapped.
- The encryption key for the structure itself remains the same!

How do I encrypt my Coupling Facility Structure? → Implementation - Define

- Add parameter ENCRYPT(YES) to a structure in the CFRM Policy and write it to CDS with IXCMIAPU. Run it with REPORT(YES) to get the key details reported.

```
//STEP1  EXEC PGM=IXCMIAPU
//SYSPRINT DD  SYSOUT=*
//SYSIN   DD  *
      DATA TYPE(CFRM) REPORT(YES)
      DEFINE POLICY NAME(CFRMPOL1) REPLACE(YES)
      CF    NAME(CF1)      TYPE(008561)
            MFG(IBM)      PLANT(02)
            SEQUENCE(<serial1>)
            PARTITION(1F)   SITE(SITE1)
            CPCID(00)      DUMPSPACE(4096M)
      CF    NAME(CF2)      TYPE(008561)
            MFG(IBM)      PLANT(02)
            SEQUENCE(<serial2>)
            PARTITION(1F)   SITE(SITE2)
            CPCID(00)      DUMPSPACE(4096M)
      STRUCTURE NAME(OPERLOG) INITSIZE(512M) SIZE(768M)
            MINSIZE(512M)
            DUPLEX(ENABLED)
            FULLTHRESHOLD(90)
            ALLOWAUTOALT(YES)
            PREFLIST(CF1,CF2)
            ENCRYPT(YES)
/*
      ENCRYPT(YES)
```

IXCMIAPU output

```
IXC748I CRYPTOGRAPHIC KEY TOKENS ENCIPHERED UNDER THE CURRENT
MASTER KEY FOR STRUCTURES SPECIFYING DATA ENCRYPTION

STRUCTURE NAME(OPERLOG) SIZE(768M)
  INITSIZE(512M)
  MINSIZE(512M)
  FULLTHRESHOLD(90)
  ALLOWAUTOALT(YES)
  DUPLEX(ENABLED)
  PREFLIST(CF1,CF2)
  ENCRYPT(YES) /* Key Generated: 03/28/2025 11:47:46.672941 */
```

How do I encrypt my Coupling Facility Structure? → Implementation - Activate

- Activate the CFRM Policy that has been written by IXCMIAPI in 'Define' Step
 - SETXCF START, POLICY, TYPE=CFRM, POLNAME=<polname>
→ IXC511I START ADMINISTRATIVE POLICY <polname> FOR CFRM ACCEPTED
 - Leads to pending policy changes
→ IXC512I POLICY CHANGE IN PROGRESS FOR CFRM 405
TO MAKE <polname> POLICY ACTIVE.
xx POLICY CHANGE(S) PENDING.
- Rebuild the structure to encrypt it
 - If structure is DUPLEX(ENABLED)
 - SETXCF STOP, REBUILD, DUPLEX, STRNAME=<strname>, KEEP=OLD
 - SETXCF START, REBUILD, STRNAME=<strname>
 - If structure is DUPLEX(DISABLED)
 - SETXCF START, REBUILD, STRNAME=<strname>
- Verify the Policy is active – ALL rebuild activities must be completed
→ IXC513I COMPLETED POLICY CHANGE FOR CFRM. 593
<polname> POLICY IS ACTIVE.

How do I encrypt my Coupling Facility Structure? → Implementation - Verify

- Various places to check the encryption status
- System Command: D XCF,STR,STRNAME=OPERLOG

```
IXC360I 14.33.41 DISPLAY XCF 427
STRNAME: OPERLOG
STATUS: REASON SPECIFIED WITH REBUILD START:
        POLICY-INITIATED
        DUPLEXING REBUILD
        METHOD: SYSTEM-MANAGED
        AUTO VERSION: DF54C89D 3A99BA58
        PHASE: DUPLEX ESTABLISHED
[--content intentionally removed--]
ENFORCEORDER   : NO
EXCLUSION LIST IS EMPTY
ENCRYPT       : YES
```

How do I encrypt my Coupling Facility Structure? → Implementation - Verify

- Various places to check the encryption status
- SDSF – ‘CFS’ panel

STRNAME	TIME	DUPLEX	AutoAlt	Realloc	Full%	Rebuild%	PolSize	InitSize	MinSize	MaxSize	Policy	CFName	Encrypt	EncrType
HSA_LOG	6:54:52	ENABLED	YES	YES	0	0	20480	10240	10240	20480	CFRMPOL1	CF	YES	AES
HZS_HEALTHCHKLOG	6:34:17	DISABLED	YES	YES	80	0	393216	262144	262144	393216	CFRMPOL1	CF	YES	AES
IGWLOCK00	9:26:41	ENABLED	YES	YES	80	0	393216	262144	131072	393216	CFRMPOL1	CF	NO	
IRRXCFO0_B001	6:34:38	DISABLED	NO	YES	80	0	32768	0	16384	32768	CFRMPOL1	CF	YES	AES
IRRXCFO0_P001	6:35:20	DISABLED	NO	YES	80	0	32768	0	16384	32768	CFRMPOL1	CF	YES	AES
ISGLOCK	9:26:42	DISABLED	NO	YES	80	0	396288	0	396288	264192	CFRMPOL1	CF	NO	
ISTGENERIC	6:42:54	ENABLED	YES	YES	80	0	24576	12288	6144	24576	CFRMPOL1	CF	YES	AES
ISTMNPS	6:42:45	ENABLED	YES	YES	80	0	81940	47104	47104	82944	CFRMPOL1	CF	YES	AES
IXCSIG1	6:31:59	DISABLED	YES	YES	80	0	73728	41472	41472	73728	CFRMPOL1	CF	YES	AES
IXCSIG10	6:32:47	DISABLED	YES	YES	80	0	73728	41472	41472	73728	CFRMPOL1	CF	YES	AES
IXCSIG11	6:32:52	DISABLED	YES	YES	80	0	73728	41472	41472	73728	CFRMPOL1	CF	YES	AES
IXCSIG12	6:32:55	DISABLED	YES	YES	80	0	73728	41472	41472	73728	CFRMPOL1	CF	YES	AES
IXCSIG2	6:33:03	DISABLED	YES	YES	80	0	73728	41472	41472	73728	CFRMPOL1	CF	YES	AES

- Idea [ZOS-I-4156](#) was rejected to add N/A into Encrypt column for not eligible structures (LOCK)

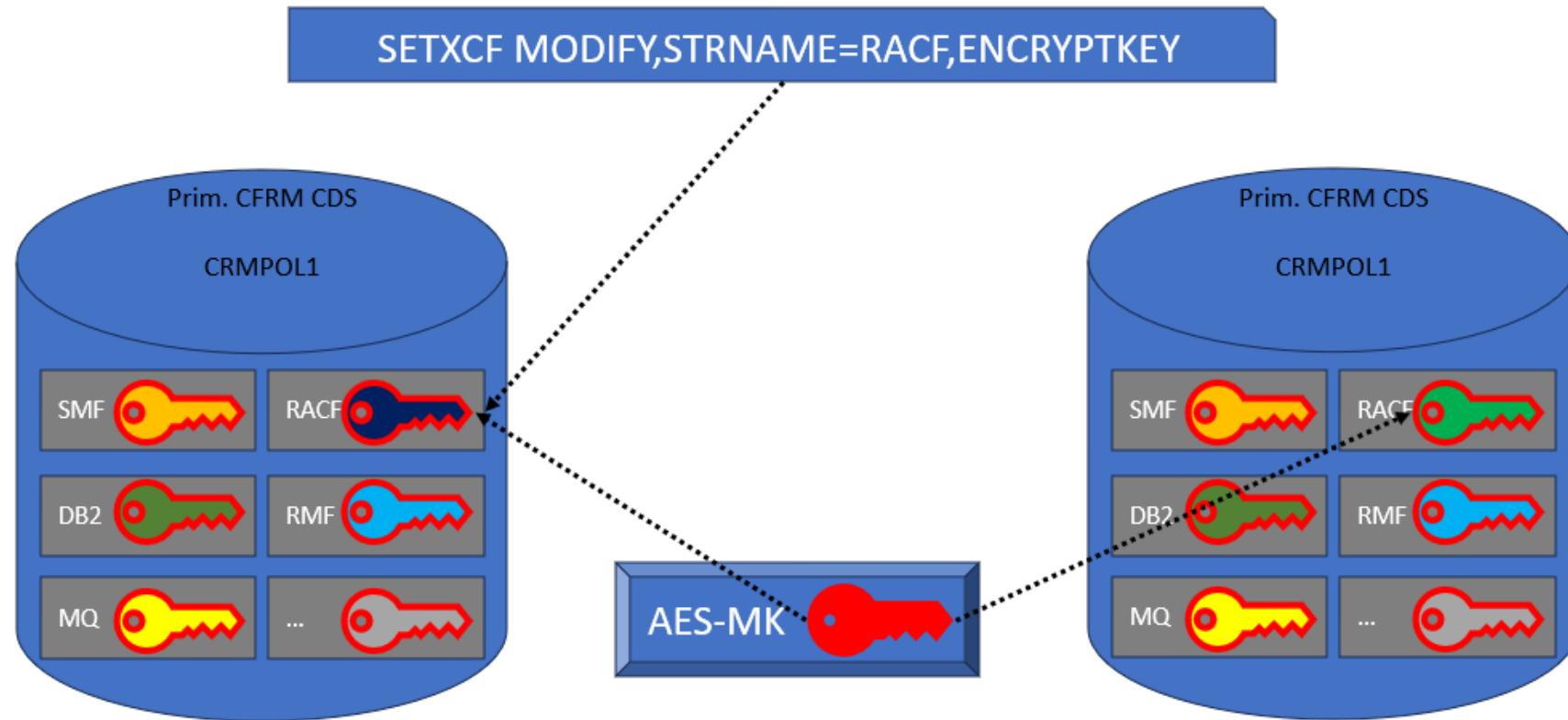
How do I encrypt my Coupling Facility Structure? → Implementation - Verify

- Various places to check the encryption status
- zSecure – Sysplex overview
- zSecure – RE.K.C panel (Resources, Keys, Coupling)

SYSPLEX wide overview of coupling facility structures						
Sysplex	Ver	#struct				
Name		Type	Status	PEn	#CF	
OPERLOG		List	Alloc	Yes	2	

CF Structure identification	
Structure name	OPERLOG
Coupling facility name	
Structure status	Alloc
Status in coupling facility	RbldNew
Environment information	
Sysplex name	
Version from ALLOC	
System name	
System name (SMFID)	
Security complex name	
CF Structure attributes	
Structure type	List
Allocation timestamp	2Jul24 04:36
CKFREEZE timestamp	4Jul24 02:29
Policy name	
Policy size (4k blocks)	196608
Policy based encryption	Yes
Pending encryption	No
Pending key change	No
Encrypted	Yes
Encryption type	AES-256
Enc. key timestamp in policy	2Jul24 04:34
Enc. key timestamp in CF	2Jul24 04:34

How do I operate encrypted structures? → Status check


- List the structures that are encrypted
 - D XCF,STR,STRNAME=<strname>,STATUS=ENCRYPTED
- List the structures that are not encrypted
 - D XCF,STR,STRNAM=<strname>,STATUS=NOTENCRYPTED
- List the structures whose encryption state does not match the ENCRYPT specification in the active CFRM policy
 - D XCF,STR,STRNAM=<strname>,STATUS=ENCMISMATCH

Remark:

Similar views are available in SDSF 'CFS' panel or in Netview 'INGCF' panel

How do I operate encrypted structures? → Change Structure AES key

- CF structure keys do not change automatically but can be triggered manually

How do I operate encrypted structures? → Change Structure AES key

- Trigger an AES key change for a coupling structure
 - SETXCF MODIFY,STRNAME=<strname>,ENCRYPTKEY
 - IXC562I SETXCF COMMAND TO MODIFY THE ENCRYPTION KEY FOR STRUCTURE(S) IN CFRM POLICY ENCRYPT ACCEPTED
 - IXC512I POLICY CHANGE IN PROGRESS FORCFRM TO MAKE ENCRYPT POLICY ACTIVE.
 - 1 POLICY CHANGE(S) PENDING.
 - IXC121I CFRM ENCRYPT STATUS CHANGE: ADMINISTRATIVE DATA KEYS HAVE BEEN UPDATED.
 - IXC563I SETXCF COMMAND COMPLETED: ENCRYPTION KEY CHANGED IMMEDIATELY FOR 0 STRUCTURE(S), ENCRYPTION KEY CHANGE PENDING FOR 1 STRUCTURE(S)
- Resolve the pending action on the structure
 - If structure is DUPLEX(ENABLED)
 - SETXCF STOP,REBUILD,DUPLEX,STRNAME=<strname>,KEEP=OLD
 - SETXCF START,REBUILD,STRNAME=<strname>
 - If structure is DUPLEX(DISABLED)
 - SETXCF START,REBUILD,STRNAME=<strname>

What can I encrypt and how does it affect my performance?

- No noticeable CPACF consumption increase
- No measured delay in DB2 processing
 - Checking DB2 Accounting records have not shown differences in Jobs accessing either encrypted or unencrypted group buffer pool data
 - No measured or perceived performance decrease
- Structures form type CACHE, LIST and SERLIST can be encrypted
 - Data in 'entries' and 'adjunct' will be encrypted
- LOCK structures cannot be encrypted (those contain anyway no user data)
 - Controls and metadata are not encrypted

What to pay special attention to?

- A structure key can exist more than once, depending on the number of Policies in the CDS
- Structure key change does not trigger automatically a re-encipherment
 - Manual actions are required: STOP REBUILD, DUPLEX [...] and/or START REBUILD [...]
- The AES master key on the system where the job runs must be the same used by other systems in the Sysplex where the encrypted structures are used.
 - For example, if XCF signal structures are encrypted the same master AES key must as well be present in GDPS systems
- AES master key must be set before IPL
 - Load in XCF-Local mode (or monoplex to install the AES master key)
 - Load AES master key via TKE into the LPARs domain
- Copy the CDS to a DR-location or another Sysplex, the same AES master key must be available that was used when the IXCMIAPI utility created the keys
 - Ensure that the master key used to wrap the encryption keys in the CDS is the same as the one used by that new Sysplex

What do I need to exploit this fancy stuff?

- AES master key in CCA co-processor
- CPACF must be available
- z14 or newer
- zOS 2.3 or newer
- RACF authorizations to ICSF services or TRUSTED
- IXCMIAPIU job submitter with appropriate access to CL(CSFSERV) CSFKGN and CSFKYT profiles
- APAR OA51879 for the metrics (SMF 74(4)).
- APAR OA52003 for RMF support
- APAR OA52060 for zOS toleration

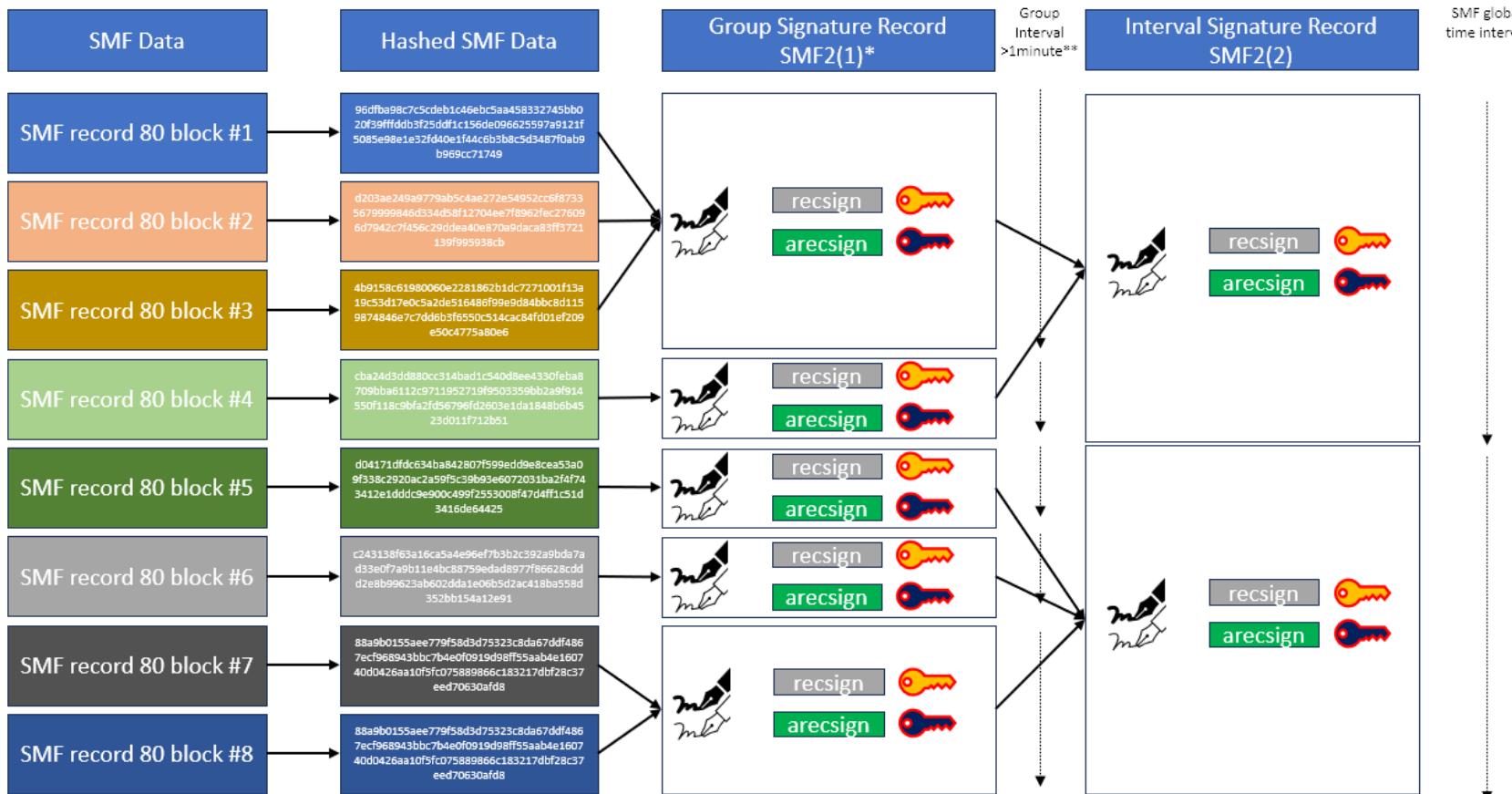
References

- IBM Documentation – Encrypting coupling facility structure data
 - <https://www.ibm.com/docs/en/zos/3.1.0?topic=resources-encrypting-coupling-facility-structure-data>
- GSE UK Virtual Conference 2021 (no direct link found but the one via google works)
 - https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjJhMbdscylAxVUxAIHHT5CWEQFnoECBwQAQ&url=https%3A%2F%2Fconferences.gse.org.uk%2F2021%2Fpresentations%2F5BC.pdf&usg=AOvVaw3KLta6AW5o9LaFII_TXF93&opi=89978449
- IBM Z Security Conference (video) - Pervasive encryption in z_OS_ CF structures and log streams
 - https://mediacenter.ibm.com/media/Pervasive+encryption+in+z_OS+_CF+structures+and+log+streams/1_2xdzlewq

SMF Record Signing

- Why?
- How?
- Operate it
- What?

Why should I sign my SMF Records?

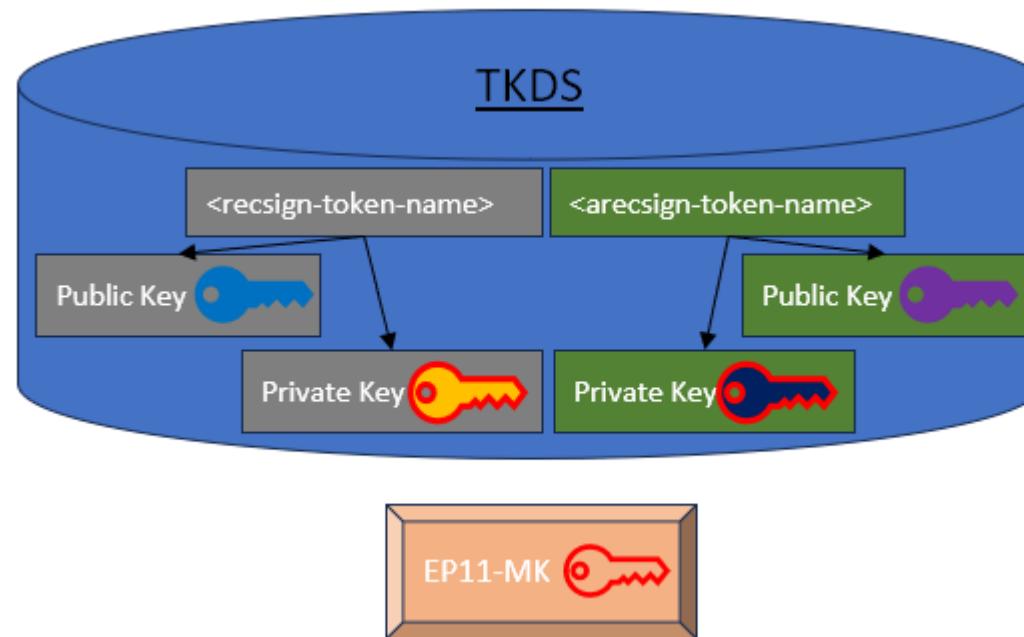

- Create Tamper Proof SMF Records
 - Useful to attest that created SMF records were not tampered with after creation
 - Potential manual interventions and updates will invalidate the records
- Simple to implement at no extra cost
- Audit proof verification
- Segregation of duties and taking control back from the zOS Admin to the Security Auditor for assurance

How do I sign my SMF Records?

- Create Public/Private Key Pair and store in TKDS
- Update SMFPRMxx Member with RECSIGN and ARECSIGN keyword and activate it (SET SMF=xy)
- Done
- Unfortunately, not that straight forward as CF encryption so let's have a look at it step by step

How do I sign my SMF Records? → Big picture

- SMF data is signed on its way to the System Logger



*It is only illustrative to outline that the group signatures are signed 'periodically'

**Periodically according the manual means that after 1minute the group is signed, but it waits for the records being written, hence it can even be 1minute and 2s but as a rule of thumb, it's 1minute a potentially few seconds

How do I sign my SMF Records? → Key Storage

- Each Token has its own key pair stored in the TKDS and encrypted by the systems EP11 master key
- The Token is referenced in in the SMFPRMxx member not the key

How do I sign my SMF Records? → Implementation - Key and Token part 1

- Add the Token to the TKDS
- Generate RSA or ECC keypair for 'classic' algorithm
- Generate Dilithium-8-7 R3 or Dilithium-6-5 R2 key pair for 'alternate' algorithm
- Token must be exactly 32 characters
 - Consider good naming conventions that might include (to understand its usage in ICSF/zSecure Reports as there can be many other Tokens in the system):
 - Subsystem using the Token
 - Usage of the Token
 - Key type associated
 - Algorithm used
 - Where used
 - Date of Token (Key pair) issuance

TOKEN -> Token names build according below pattern
-> SMF.SIG.PK.RSA4096.LGSTRM.D24275
-> | | | | |
-> | | | | |
-> | | | | |
-> | | | | |
-> | | | | | Date of Token Generation
-> | | | | | Where this used {LGSTRM}
-> | | | | | Algorithm and key length
-> | | | | | {RSA2048|RSA4096|LI287R3|LI265R2}
-> | | | | | Key type. Clear or Protected key {CK|PK}
-> | | | | | Usage of the token. Sign or Validate {SIG|VAL}
-> | | | | | Subsystem using the token. {SMF}

sample: SMF.SIG.PK.RSA4096.LGSTRM.D24221

How do I sign my SMF Records? → Implementation - Key and Token part 2

- 4* JCLs to implement our setup with different REXXs calling ICSF services
 - Recommended to call REXX with IKJEFT1A to return REXX internal return codes back to the caller (Job)
 - Steer the Jobs with symbols
 - REXX to consume input values and call ICSF service CSFPGKP for RSA and LI2
 - Export the public key from the source (creating) system and import in a single system (production) for centralized validation
 - not yet possible – more at the end

**examples can be shared; it was not possible to include them here as they are too extensive for a presentation*

How do I sign my SMF Records? → Implementation - SMFPRMxx

- Add the RECSIGN and ARECSIGN parameters to the Logstreams designated for signing
 - RECSIGN(HASH(<hash-algo>),SIGNATURE(<sig-algo>),TOKENNAME(<recsign-token-name>))
 - ARECSIGN(HASH(<hash-algo>),SIGNATURE(<sig-algo>),TOKENNAME(<arecsign-token-name>))

```
SYS1.PARMLIB(SMFPRMxx)
INTERVAL(<interval-time>)
LSNAME(<lsname>,
       TYPE(<record-type>),COMPRESS,
       RECSIGN(HASH(<hash-algo>),SIGNATURE(<sig-algo>),
               TOKENNAME(<recsign-token-name>)),
       ARECSIGN(HASH(<hash-algo>),SIGNATURE(<sig-algo>),
               TOKENNAME(<arecsign-token-name>)))
```

How do I sign my SMF Records? → Implementation - Activate

- Activate the updated SMFPRMxx member dynamically

- SET SMF=xx

```
IEE252I MEMBER SMFPRMxx FOUND IN SYS1.PARMLIB
```

```
[removed IEF196I messages]
```

```
IFA711I LOGSTREAM PARAMETERS ARE IN EFFECT
```

```
IFA714I 14.55.57 SMF STATUS 633
```

LOGSTREAM NAME	BUFFERS	STATUS
A-IFASMF.<ls-name-aa>	796930	CONNECTED
A-IFASMF.<ls-name-bb>	2810202	CONNECTED
A-IFASMF.<ls-name-cc>	6985134	CONNECTED
A-IFASMF.<ls-name-dd>	0	CONNECTED
A-IFASMF.<ls-name-ee>	31975945	CONNECTED
A-IFASMF.<ls-name-ff>	0	CONNECTED
A-IFASMF.INMEM	1986903399	IN-MEMORY

```
IEE536I SMF      VALUE xx NOW IN EFFECT
```

How do I sign my SMF Records? → Implementation - Verify

- Display SMF options to verify if the expected changes are in effect

```
- D SMF,O
IEE967I 15.03.43 SMF PARAMETERS 813
[--data left intentionally--]
LSNAME(IFASMF.<ls-name-aa>,ARECSIGN(HASH(SHA512),
TOKENNAME(<arecsign-token-name>),SIGNATURE(LI2)),
RECSIGN(HASH(SHA512),
TOKENNAME(<recsign-token-name>),SIGNATURE(RSA)),
COMPRESS,TYPE(1:11)) -- PARMLIB
LSNAME(IFASMF.<ls-name-bb>,ARECSIGN(HASH(SHA512),
TOKENNAME(<arecsign-token-name>),SIGNATURE(LI2)),
RECSIGN(HASH(SHA512),
TOKENNAME(<recsign-token-name>),SIGNATURE(RSA)),
COMPRESS,TYPE(12:24)) -- PARMLIB
```

How do I sign my SMF Records? → Where is it stored?

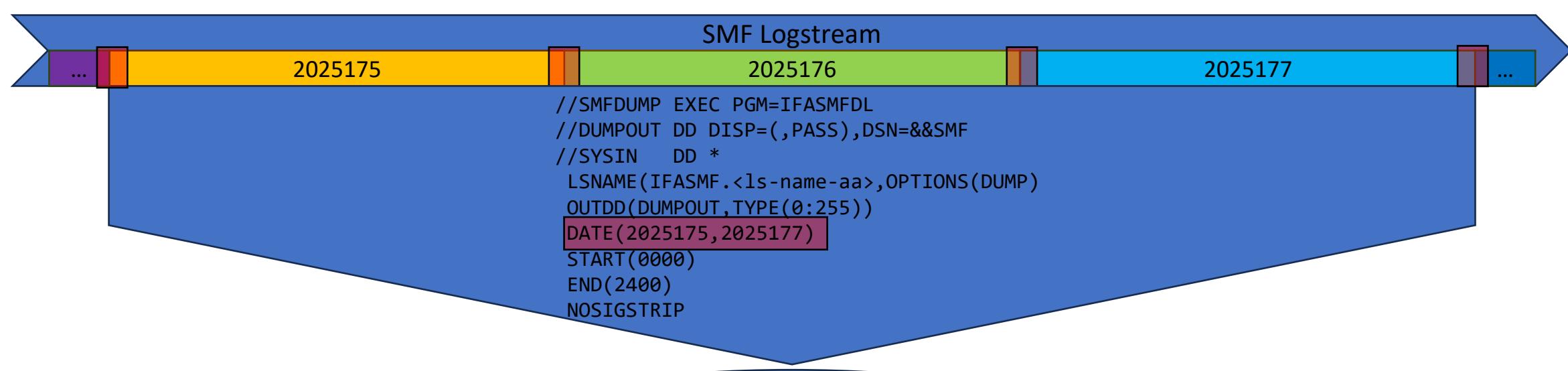
- Digital Signatures are stored in SMF type 2 record (which is the dump header)
 - Subtype 1 stores grouped signature
 - Subtype 2 stores interval-based signature
 - New data included in these records includes counts of records included, start and end times of the data included and the hashing and signature methods.

SMF Record type 2 (x'02') – Dump header

Subtype 1:

Signature record that represents a signature group

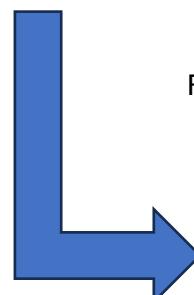
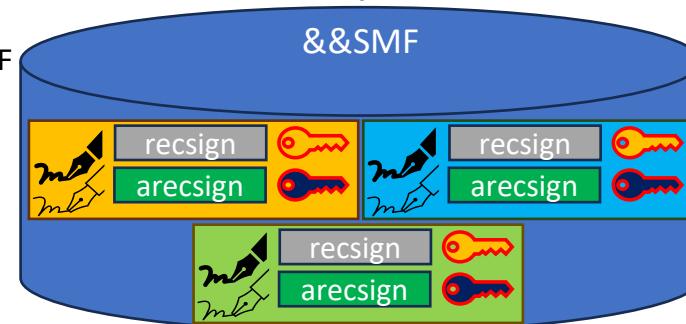
Subtype 2:


Signature record that represents a signature interval

Data included in these records includes counts of records included, start and end times of the data, the hashing and signature methods

How do I operate SMF signing? → New Token and Key Pair

- Add new Token
- Generate new Key pair
- Update SMFPRMxx with new token
- Activate SMFPRMxx with SET SMF=xx
- Verify with D SMF,0
- Validate data afterwards with SMF dump process and SIGNVALIDATE | ASIGNVALIDATE



How do I operate SMF signing? → Signature Verification

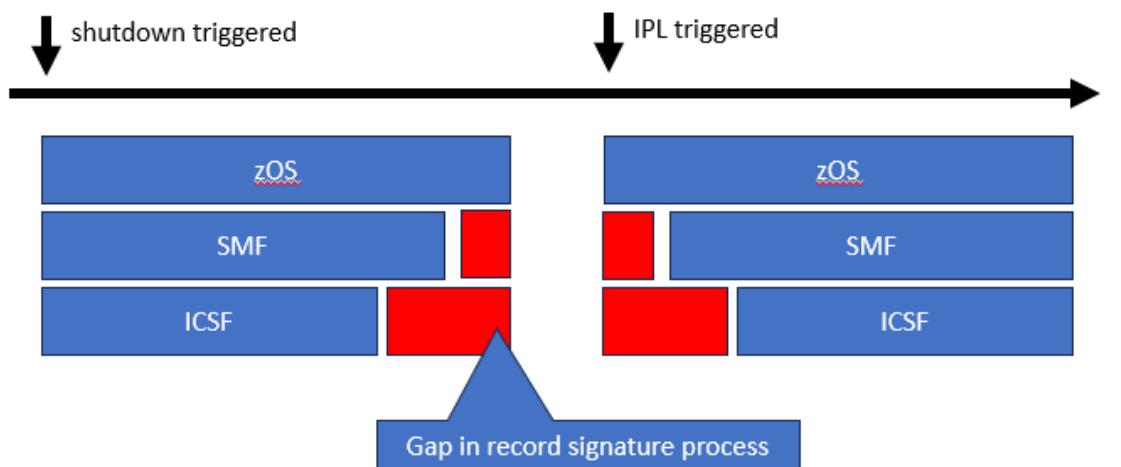

```

//SMFVALID EXEC PGM=IFASMFDP
//DUMPIN DD DISP=OLD,DSN=&&SMF
//DUMPUT DD DUMMY
//SYSIN DD *
  INDD(DUMPIN,OPTIONS(DUMP))
  OUTDD(DUMPUT,TYPE(0:255))
  DATE(2025176,2025176)
  START(0000)
  END(2400)
  SID(system-id)
  SIGNVALIDATE(HASH(<hash-alog>),TOKENNAME(<recsign-token-name>))
  ASIGNVALIDATE(HASH(<hash-alog>),TOKENNAME(<arecsign-token-name>))

```


RECORD VALIDATION REPORT FOR <system-id>									
RECORD	RECORD	VALIDATION	VALIDATION	VALIDATION	VALIDATION	RECORDS	GROUPS	INTERVALS	
TYPE	SUBTYPE	FAILURE	DATE-TIME	DATE-TIME	DATE-TIME	VALIDATED	VALIDATED	VALIDATED	
80	*	N	06/25/2025-00:00:00	06/25/2025-23:59:59	06/25/2025-23:59:59	20,940,410	1,444	96	
82	42	N	06/25/2025-00:00:00	06/25/2025-23:59:59	06/25/2025-23:59:59	1,288,109	1,428	96	
82	46	N	06/25/2025-00:00:00	06/25/2025-23:59:59	06/25/2025-23:59:59	1,155,987	7	96	
82	47	N	06/25/2025-00:00:00	06/25/2025-23:59:59	06/25/2025-23:59:59	61	7	96	
83	3	N	06/25/2025-00:00:00	06/25/2025-23:59:59	06/25/2025-23:59:59	690,695	1,413	96	

VALIDATION SUCCEEDED


What to pay special attention to? 1/2

- Special Considerations for the times around midnight, as signatures can overlap into the next calendar day.
- If IFASMFDL uses single day input only, a validation with START(0000) END(24000) might fail

```
IFA010I END(2400) -- SYSIN
IFA010I START(0000) -- SYSIN
    [--content intentionally removed--]
IFA020I DUMPOUT -- NULLFILE
IFA741I UNABLE TO PERFORM SMF SIGNATURE VALIDATION
IFA742I SMF SIGNATURE VALIDATION FAILED DUE TO
    INCONSISTENT RECORDS - RECORDS DO NOT MATCH EXPECTED COUNTS
    RECORD   RECORD   VALIDATION   VALIDATION START   VALIDATION END   RECORDS   GROUPS   INTERVALS
    TYPE     SUBTYPE  FAILURE      DATE-TIME      DATE-TIME      VALIDATED  VALIDATED  VALIDATED
    16       *          N          05/20/2025-00:00:00 05/20/2025-23:59:59  2,550    635      96
    23       *          Y          05/20/2025-00:00:00 05/20/2025-23:45:00  95      95      95
    41       1          N          05/20/2025-00:00:00 05/20/2025-23:45:00  258      43      95
    41       2          N          05/20/2025-00:00:00 05/20/2025-23:45:00  258      43      95
    41       3          N          05/20/2025-00:00:00 05/20/2025-23:45:00  90      90      95
    87       1          N          05/20/2025-00:00:00 05/20/2025-23:45:00  361      324      95
    88       1          N          05/20/2025-00:00:00 05/20/2025-23:45:00  2,280    95      95
    88      11         N          05/20/2025-00:00:00 05/20/2025-23:45:00  2,200    109      95
    90       *          N          05/20/2025-00:00:00 05/20/2025-23:45:00  1        1      95
    103      13         N          05/20/2025-00:00:00 05/20/2025-23:45:00  95      95      95
VALIDATION FAILED: INCONSISTENT RECORDS - RECORDS DO NOT MATCH EXPECTED COUNTS
```

What to pay special attention to? 2/2

- Naming convention of the Token (32 Characters fix)
 - Validation relies on the public key, but the token must match the one used during signing. This creates challenges for our process and naming conventions, as the key should be relevant to the validation itself - not tied to the token name.
 - <https://ideas.ibm.com/ideas/ZOS-I-4303>
- Key Type available (CEX card support especially for LI2) and to be used 'protected key' -> Y or 'clear key' -> T
- Lifecycle of the keys
 - Take notes when they are switched – maybe two tokens for one day
- How to incorporate the validation into the dump process
 - Not yet very resource and user friendly as the same data must be processed twice 1. IFASMFDL then 2. IFASMFDP
 - <https://ideas.ibm.com/ideas/ZOS-I-4274>
- Validation can only be performed for a single system (SID)
- During shutdown and IPL 'corrupted' signed SMF records reported as ICSF is not available all the time
 - (extremely simplified and only a rough representation of the problem)

Additional information

- SMF signing is active for all our records in all our environments
- Validation currently on an ad-hoc base – planned to incorporate into daily process
- IBM recommends to use RELATIVEDATE and OPTION(ARCHIVE) instead of DATE and OPTION(DUMP)
 - RELATIVEDATE is cumbersome in daily operations and restarts few days later require JCL updates
 - ARHIVE deletes dumped records in logstream – however, we still require them for other processes
- Case TS017593416 still open to address an ‘unknown’ problem – RC and RSN are reported as ‘N/A’
 - Records are signed and can be validated properly – only issued during activation time
 - IBM can reproduce the issue but still looking for the root cause

IFA740E UNABLE TO PERFORM SMF SIGNATURE GENERATION 780

FOR LOGSTREAM IFASMF.<ls-name-aa>

UNEXPECTED ERROR IN SMF SIGNATURE PROCESSING

IFA743I SMF SIGNATURE GENERATION FAILURE DIAGNOSTIC INFORMATION 782

FOR LOGSTREAM IFASMF.<ls-name-aa>

TOKENNAME

HASH N/A SERVICE NAME N/A

RC=N/A RSN=N/A

References

- IBM Documentation to setup and use digitally signed SMF Records
 - <https://www.ibm.com/docs/en/zos/3.1.0?topic=records-setting-up-using-digital-signed-smf>
- IBM Github für ICSF
 - <https://github.com/IBM/ICSF-Education/tree/main>
- ICSF Return and reason code
 - <https://www.ibm.com/docs/en/zos/3.1.0?topic=iccrc-return-codes-reason-codes>
- Ideas to vote for related to SMF signatures (BCP_SMF/ICSF and zSecure)
 - ICSF - Enhance IFA742I SMF SIGNATURE VALIDATION FAILED - signature failure → <https://ideas.ibm.com/ideas/ZOS-I-4257>
 - ICSF - Enhance IFA742I SMF SIGNATURE VALIDATION FAILED - provided tokens → <https://ideas.ibm.com/ideas/ZOS-I-4256>
 - ICSF - Enhance IFA742I SMF SIGNATURE VALIDATION FAILED - in regards of inconsistent records → <https://ideas.ibm.com/ideas/ZOS-I-4255>

The background of the slide features a smooth, abstract blue gradient. Two large, semi-transparent circles overlap the center. The circle on the left is a lighter shade of blue and is mostly visible on the left side. The circle on the right is a darker shade of blue and is mostly visible on the right side, with its left edge partially cut off by the slide's edge.

Any
questions?

Legal notice

©2024 Swiss Re. All rights reserved. You may use this presentation for private or internal purposes but note that any copyright or other proprietary notices must not be removed. You are not permitted to create any modifications or derivative works of this presentation, or to use it for commercial or other public purposes, without the prior written permission of Swiss Re.

The information and opinions contained in the presentation are provided as at the date of the presentation and may change. Although the information used was taken from reliable sources, Swiss Re does not accept any responsibility for its accuracy or comprehensiveness or its updating. All liability for the accuracy and completeness of the information or for any damage or loss resulting from its use is expressly excluded.